
A general study on segmentation

IPN Lyon, 69622 Villeurbanne Cedex

Draft 1 - June 2007

Abstract

In this report, several e�ects that could constrain the segmentation of the Paris array are studied. The deter-
mination of the size(s) of the cells which will composed the detector relies on many factors. Geant4 simulations
help to optimize the segmentation by showing how an incident γ−ray (or a more complex source of γ−rays) is
absorbed, depending on the energy: this will be treated later on. Rather, the present paper focuses on general
e�ects, treated without any simulations, that could a�ect the performances of the array, namely Doppler shift,
Doppler broadening and pile-up.
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Physics cases's requirements

In the Krakow meeting (14-15 May 2007), the following table (Table1) has been established to summarize, for
the di�erent physics cases, the required performances of the Paris detector.

dynamics ∆E ∆θ counting rates ∆Ω ∆T

Jacobi transitions 100 keV → 30 MeV 5 MeV ∆L = 5~ 4π
Di�erential technique for GDR 100 keV → 30 MeV 5 MeV ∆L = 5~ 4π

GDR properties 100 keV → 30 MeV 5 MeV ∆L = 5~ 4π
isospin mixing 100 keV → 30 MeV 5 MeV ∆L = 5~ 4π

multifragmentation 2π
reaction 100 keV → 30 MeV 5 MeV ∆L = 5~ 104 − 105 4π 1ns

radiative capture 100 keV → 40 MeV 2-3% 4π
fragmentation 3% 4π
astrophysics 4π

Table 1: general constraints for the di�erent physics cases

Remarks:

• requirements related to the segmentation of the array are in the ∆θ column

• the hole for the beam pipe is not substracted in the ∆Ω coverage column

Doppler shift

Most of the study presented here relies on the non-relativistic Doppler shift formula which is given in Eq1. with
the conventions illustrated in Fig1.

A γ−ray emitted by a moving source along the horizontal axis is detected at the angle θ with an energy (Ed)
di�erent from the emitted one (E0):

Ed = E0(1 + β cos(θ)) Eq1.

where β corresponds to the recoil velocity (in c units). Because the used function works for non-relativistic
moving sources, it is important to de�ne the upper limit for β imposed by all the physics cases to be sure
the performances will be reached in all cases. In particular, the Lorentz transformation boosts the laboratory
energy in such a way it breaks the symmetry θ → θ + 90o.
If we considere the value βmax = 0.1 (3 centimeters per second or an energy of 4.7 AMeV) as the upper limit
for the recoil velocity, the Doppler shift is maximum at 0 and 180 degrees and correspond to a shift of 10%.
Thus a 1 MeV γ−ray will be detected with an energy of 1100 keV.

The relativistic Doppler e�ect is given by Eq2:

Ed = E0

γ
1

1−β cos(θ) , γ = 1√
1−β2

Eq2.
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Figure 1: Conventions for the parameters involved

To illustrate the di�erences between the two formula, several curves have been drawn in Fig2. The energy of
a 10 MeV γ−ray (in center of mass) is detected as a function of the angle (from 0 to 180 degrees) and for
three di�erent recoil velocities (3, 10 and 80 %). In blue is represented the classical Doppler e�ect while the
relativistic one is represented in red. In the left panel, only the red curve could be seen because the two formula
match perfectly. Even for a recoil velocity around 10%, the di�erence between the two shifts is negligible (panel
in the middle). However, for the highest recoil velocity (right panel), the clear e�ect of the Lorentz boost is
seen with an important breaking of the symmetry.

In conclusion, as soon as the PARIS physics cases concern recoil velocity lower than 10% of c, the classical
formula is used to estimate, in this report, what could be the characteristics of the PARIS geometry.

Doppler broadening

The energy is detected with uncertainties (∆Etot) coming from the intrinsic resolution of the detector (∆Eint)
and from the Doppler correction (∆Edop) applied.

∆Etot =
√

(∆Eint) 2 + (∆Edop) 2
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Figure 2: Doppler shift as a function of the θ angle for a 10 MeV γ-ray for three di�erent recoil velocities.
In blue, the classical formula is applied while in red the relativistic one is applied.

For the intrinsic resolution, LaBr3 is choosen for the study. According to previous studies1, it is given by:

∆Eint = 76.3
√

E(keV )

E being in keV. The part due to the Doppler broadening could be decomposed in three terms due respectively
to the opening angle of the detector (∆θ), the uncertainty concerning the direction of the source (∆θr) and its
absolute velocity value (∆β) .

1. ∆E(∆θ) =
∫ θ+∆θ

θ−∆θ
∂E
∂θ dθ = 2Eβ sin(∆θ) sin(θ)

2. ∆E(∆θr) =
∫ θ+∆θr

θ−∆θr

∂E
∂θ dθ = 2Eβ sin(∆θr) sin(θ)

3. ∆E(∆β) =
∫ β+∆β

β−∆β
∂E
∂β dβ = 2E∆β cos(θ)

1. E�ect of the opening angle of the detectors

In order to get an idea about the most suited opening angle for a detector unit, several curves have been drawn
based on the �rst equation for the Doppler broadening. To get ∆E∆θ/E constant (= k∆θ) as a function of θ,
sin(∆θ) is given by:

∆E(∆θ)/E = k∆θ = 2β sin(∆θ) sin(θ) ⇒ ∆θ = arcsin( k∆θ

2β sin θ )

Figure 3 shows the segmentations which ensure ∆E∆θ = 1 and 3% for βmax = 3% and 10%.

Remarks:

• A 2 inches detector (2*25.4mm) at a distance of 15cm gives ∆θ = 9.61o.

• To get ∆θ = 3o with a 2 inches detector, the distance from the target is 48.4cm.

• Taking into account an intrinsic resolution about 3% (LaBr3 at 662 keV), the total broadening (if the
recoil velocity is perfectly known) is 3.16 and 4.24 keV respectively for ∆E∆θ equal to 1% and 3%.

1Talk of Joël Pouthas, PARIS meeting 14-15 May 2007
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Figure 3: Required opening angle for the detectors as a function of θ for given β and given ∆E∆θ/E.

2. E�ects due to uncertainties concerning the recoil

The two contributions (∆E(∆θr) and ∆E(∆β)) have been estimated for βmax = 0.1 and two values of ∆θr: 5o

and 10o. The error on the velocity (∆β) has been set to 0.01 (see Fig4).

These parameters represent probably the worst situations regarding the PARIS physics cases. With a recoil
velocity less than 5% and a reasonable value of ∆θr < 5o, both contributions remain below 1%. Moreover, these
e�ects could be considerably minimized in case the true recoil velocity is determined event by event.

Pile-up

Pile-up occurs when several photons arrive at the 'same time' in a single cell. It depends on the number of
γ−rays emitted by the source (multiplicity of the cascade Mγ), the fraction of solid angle covered by the cell (Ω)
and its absolute e�ciency (εa). Thus, the probability to detect one γ−ray is given by εaΩ while the probability
(P γ) to detect no other γ−ray of the cascade in the same cell is given by:

P γ = (1− εaΩ)Mγ−1

assuming the simple case for which the absolute e�ciency εa does not strongly depend on the γ−ray energy or
all the transitions of the cascade have the same energy. Pile-up is crucial for the �rst shell (in case Paris will
be composed of several layers) that will be used as a spectrometer and/or to measure multiplicities. Thus, it
concerns mainly energies in the range [0,2MeV]. For that range, a relatively high value of εa (0.9) is assumed
for the forthcoming calculations. For the multiplicity of the cascade Mγ , several values are assumed from 10 to
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Figure 4: Doppler broadening due to the uncertainties concerning the recoil for several parameters

100. The maximum expected for Paris is probably around 40. However, to get an idea on how pile-up becomes
important when increasing the counting rate, an upper limit of 100 has been �xed. For the fraction of solid
angle (Ω) subtended by a single cell, it varies between two values determined by a cylinder with a diameter of
1 inch and 2 inches placed respectively at 20 and 10 centimeters from the target:

• 1′′@20 cm gives Ω ∼ 1 · 10−3

• 2′′@10 cm gives Ω ∼ 1.5 · 10−2

Remarks:

• 1′′@10 cm gives Ω ∼ 3.4 · 10−3

• 2′′@20 cm gives Ω ∼ 3.9 · 10−3

The results are displayed in Fig5 in which is represented (P γ) for several multiplicities (from 10 to 100 by step
of 10). For 2′′ cells placed at 20 cm from the target and a mean multiplicity of 40, the pile-up is slightly greater
than 10%. Of course, these estimations suppose the time between two reactions is larger that the dead time
needed to readout the �red cells. As well, a single γ−ray may �red several cells (Compton scattering, shower
in case of GDR-like γ−ray). It is then a crude estimation of the pile-up (useful to get a reasonable idea of what
should be the segmentation of the array) that has to be investigated more precisely with Geant4 simulations.
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Figure 5: Probabilty P γ to detect one and only one γ−ray from a cascade of Mγ γ−rays as a function of Ω
for εa = 0.9.
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