
EGS simulation of an ideal two-shell detector array with 100% solid angle 

 

D. R. Chakrabarty 

Nuclear Physics Division 

B.A.R.C., Mumbai, India 

 

The PARIS detector is being conceived as a two shell detector array with the 

inner detector being LaBr3 and the outer one as BGO, BaF2 or CsI.  One idea is to have 

the front and back detectors for each module joined along the length and viewed by a 

single PMT.  Assuming that from the pulse shape analysis, event by event, it is possible 

to find the energy deposited in the two parts separately, one can apply various algorithms 

of add-back to get the full energy deposited per event. There is no problem for the mono-

energetic photons incident in each event on the detector. In the actual case, say in a heavy 

ion fusion reaction, a high energy (GDR) photon will be accompanied by a number of 

low energy multiplicity gamma rays. In such circumstances, it becomes difficult to get a 

good line shape because of the coincident low energy gamma rays entering the same 

segment of the detector array. In the present work, I address these issues for an ideal two-

shell detector array. 

 

The array consists of an inner and the outer shell, (the present case is for no gap 

between the shells) covering full 4-pi and divided into a number of elements of almost 

equal solid angle per element. In the present treatment of a “telescopic” configuration of 

the inner and outer parts of each module, the number of detectors is the same in the inner 

and the outer shell. The inner radius of the inner shell is chosen as 15 cm, the outer radius 

of the inner shell (the same as the inner radius of the outer shell) as 20 cm and the outer 

radius of the outer shell is chosen as 35 cm. The inner shell detectors are LaBr3 and the 

outer shell detectors are CsI. Thus, the Labr3 are 5 cm thick and the CsI are 15 cm thick. 

 

The source of the gamma rays is at the centre of both the shells. In each event, a 

high energy gamma ray (energy Egh) is incident on the shell assuming isotropic spatial 

distribution. At the same time, the multiplicity of the accompanying gamma rays is 

chosen, following a random number generation, from a triangular multiplicity distribution 

with maximum multiplicity Mmax. The energy of the multiplicity gamma rays are 

assumed to increase linearly from 0 to Emax for M changing from 0 to Mmax. (Example: 

Say Mmax=30 and Emax=3.0. If the randomly chosen multiplicity is 20, the energies of 

the 20 photons will be 0 to 2.0 MeV, equally spaced. If M=10, the energies will be 0 to 

1.0 MeV and so on..).  These gammas are also assumed to have an isotropic angular 

distribution. The energy resolutions of the LaBr3 and CsI are taken as 3.5% and 13.0%, 

respectively, at 0.662 MeV.  While adding the energies to get the full energy for each 

event the following procedure is adopted.  

 

The highest energy deposited in different modules of the inner and the outer shell 

is first obtained. If the highest energy deposited is in the inner shell, the energies 

deposited in its nearest neighbours are added to get Einner. The energies of the 

corresponding detectors in the outer shell are added to get Eouter.  If the highest energy 

deposited is in the outer shell, the energies deposited in its nearest neighbours are added 



to get Eouter. The energies of the corresponding detectors in the inner shell are added to 

get Einner. These are finally added to get Esum. Before adding, of course, the energy 

deposited is spread out following the resolution functions. In the following, I present the 

results with number of detectors = 240 in each shell, for various cases of Egh= 5, 15, 25 

MeV accompanied by a multiplicity distribution with Mmax = 30 and Emax = 2 MeV. 

The results for no accompanied multiplicity are also shown. The program is run for 

20,000 events in each case. 

 

Fig. 1 shows the simulated line shape for Mmax = 0 (no accompanied 

multiplicity). The comparison between the spectra in the outer shell with the summed 

spectra shows that, as expected, we gain in efficiency by summing. (See Table I )  

 

 

Table I: Peak and tail efficiencies, with and without associated multiplicity, from the 

summed spectra (S) and that for the outer shell (O) 

 

Eg (MeV) Peak Efficiency (%) Tail Efficiency (%) Associated  

Multiplicity (Y/N) 

5 88  (S) - N 

 34  (O) - N 

 54  (S) 35 Y 

 31  (O) 6 Y 

15 74  (S) - N 

 24  (O) - N 

 56  (S) 24 Y 

 21  (O) 3.5 Y 

25 57  (S) - N 

 14  (O) - N 

 45  (S) 18 Y 

 13  (O) 2.5 Y 

 

 

However, when there is an accompanied multiplicity distribution, we get a tail above the 

full energy because of the summing of the multiplicity gamma energies. This is shown in 

Fig. 2 for the summed spectra with and without accompanied multiplicity and the 

efficiencies for the tail part are shown in the Table I. The tail contribution is relatively 

more important for lower energy gamma rays, as expected. The tail contribution in the 

outer shell spectra are shown in Fig.3 

 



 
 

 

 

 

 
 



 
 

Fig.1: Line shape for gamma rays with no associated multiplicity. 

 

 

 

 



 

 

 
 

Fig.2: Line shape for gamma rays (derived from the summed spectra) with and without 

associated multiplicity distribution. 



 
 

 



 
 

Fig.3: Line shape for gamma rays with associated multiplicity distribution. 

 

 

This shows that the multiplicity gammas are not fully stopped in the inner shell. The 

extent of the tail will obviously depend on the value of Mmax and Emax.  

 

The tails in the line shape, in principle, can be included in the data analysis. However, the 

situation is a little difficult and one should be very careful, because the line shape 

depends on the multiplicity distribution. 

 


