

Vandana Nanal TIFR on behalf of Mumbai Group

A suggestion for the array and detectors geometry Suresh Kumar

To have radial configuration with tapering of detectors

- •Provides close packing and efficient reconstruction of high energy photons
- •Tapering also helps to have smaller LaBr₃ coupled to larger diameter CsI which should be more cost effective.
- Easy variation of distance to target without a significant loss in geometrical coverage
- For radial detectors high energy photons will be effectively confined to fewer detectors leading to better Doppler correction, better energy definition and fold construction.

A simulation study with EGS D.R. Chakrabarty

E_{γ} = 5-25 MeV: line shape of high energy gamma rays with and without multiplicity photons

•Inner and outer shells with no gap in between, covering 4π , each element having almost equal solid angle

•Telescopic configuration (inner radius 15 cm, 5cm LaBr₃, 15 cm CsI), 240 detectors

•A high energy gamma ray is accompanied by multiplicity M γ , chosen randomly from a triangular distribution with M_{max} , energies of multiplicity gammas assumed to increase linearly.

For example: $M_{max} = 30$, $E_{max} = 2.0$ M=15, E=0 to 1.5 MeV equally spaced M=10, E=0 to 0.67 MeV etc. Resolution of LaBr3 ~ 3.5%, CsI ~ 13% at 662 keV

If the highest energy deposited is in inner shell, Einner (highest enegry +nearest neighbours) and corresponding Eouter are obtained.

If the highest energy deposited is in outer shell, Eouter (highest enegry +nearest neighbours) and corresponding Einner are obtained.

Esum= Eouter + Einner (after folding in resolution function)

High energy gamma rays , no multiplicity

Gain in efficiency by summing

High energy gamma rays with Multiplicity

High energy tail when accompanied by Multiplicity gammas

Tail contribution in outer shell spectra

Table I: Peak and tail efficiencies, with and without associated multiplicity, from the summed spectra (S) and that for the outer shell (O)

Eg (MeV)	Peak Efficiency (%)	Tail Efficiency (%)	Associated Multiplicity (Y/N)
5	88 (S)	-	N
	34 (O)	-	N
	54 (S)	35	Y
	31 (O)	6	Y
15	74 (S)	-	Ν
	24 (O)	-	Ν
	56 (S)	24	Y
	21 (O)	3.5	Y
25	57 (S)	-	Ν
	14 (O)	-	Ν
	45 (S)	18	Y
	13 (O)	2.5	Y

•The multiplicity gammas are not fully stopped in the inner shell. The extent of the tail will obviously depend on the value of M_{max} and E_{max} . •The tails in the line shape, in principle, can be included in the data analysis. However, the situation is a little difficult and one should be very careful, because the line shape depends on the multiplicity distribution.

In beam Time spectra with 2" LaBr₃ coupled to XP2060

(hyperfine interaction studies)

Characterization of 1.5" LaBr₃ coupled to XP2060

⁷Li(p,n₁)⁷Be*, 429 keV γ -ray

To study response of 1 m long plastic scintillator

Fig. 8. TOF spectra from $p + {}^{nat}Li$ reaction at $E_p = 6.3$, 8 and 16 MeV. The position of the gamma and neutron peaks are indicated. resolution.

 $E_p = 6.3, 8, 12, 16, 19 \text{ MeV}$ $\rightarrow E_n = 3.7, 5.3, 9.0, 12.7, 15.4$

P.C. Rout et al. NIM A 598, 526 (2009)

- Response of LaBr₃ to monoenergetic neutrons
- Pulse shape discrimination for n/gamma?
- simulations for high energy gamma line shape
- digital electronics R&D