

PARIS @ VAMOS

Physics program based on fusion reactions for PARIS @ GANIL / SPIRAL2

- Removal of γ -background caused by other channels (fission)
- \rightarrow Tagging of the mechanism
- \rightarrow Evaporation residue (A, Z, v, ϑ , φ) identification

A fusion-ER analyzer for PARIS

Do we have the suited tools ?

- Tasks of the HI device <u>for 0° operation</u>
 - Discrimination between all open reaction channels (fusion-evaporation, fission, Coulomb excitation, ...)
 - Efficient selection of fusion-ERs
 - Powerful beam rejection !

• Beam/ER separation according to v and/or magnetic rigidity $B\rho = Av/Q$

The VAriable MOde Spectrometer

- ✓ Standard $Q_h Q_v D_B$ optics (Pullanhiotan et al., NIMA593(2008)343
 - QP's for focalisation -> acceptance
 - D for dispersion in $B\rho = Av/Q$

NEW Gas-filled mode (Schmitt et al., in preparation)
 vacuum/gas separation, He filling ~1mbar, beam dump

Ch.Schmitt

- ✓ Focal plane (FP) detection system
 - drift chambers (DCs) and/or SeDs
 - Ionisation chamber (IC)
 - Si wall
 - Plastic scintillator

PARIS Collaboration Meeting, Cracow, October 2009

Observables :

Vacuum / Gas-filled magnets

• Crude identification $\Delta A/A \sim 40$

⁴⁰Ca (196MeV) + ¹⁵⁰Sm

ANAMARI code by Subotic et al., NIM B 266 (2008) 4209

VAMOS for PARIS (1)

Beam rejection and transmission in vacuum/gas

<u>Calculations</u>: Flagship experiment of PARIS, 10⁹pps, 1mg/cm² target thickness, particular ER channel ~ 100mb

PARIS Collaboration Meeting, Cracow, October 2009

VAMOS for PARIS (2)

Beam rejection and transmission in vacuum/gas

Previous experiments :

VAMOS in vacuum mode :

⁸²Kr (4.1AMeV) + ²⁷Al (0.5mg/cm²)

- $I_{beam} \sim 10^{6} pps$ (beam time \uparrow)
- mask on part of the detectors (efficiency \downarrow)

• Gas-filled RITU separator :

→ Limit ~ reached @ RITU
→ Go beyond @ VAMOS due to larger dispersion ?

VAMOS for PARIS (3)

Beam rejection and transmission in vacuum/gas

Vacuum spectrometer :

• Gas-filled separator :

PARIS Collaboration Meeting, Cracow, October 2009

Conclusions

Challenging kinematics addressed by PARIS physics for ER measurements @ 0°

✓ VAMOS, vacuum or gas-filled, as a powerful separator (large acceptance, large dispersion, accurate v)

- Feasibility to be evaluated on case-by-case basis (entrance channel, system size, E) <u>vacuum mode</u>: asym direct, sym and inverse at high E <u>gas-filled mode</u>: asym direct, sym to inverse (except low E for very inverse)
- ✓ Alternatives :
 - VAMOS at $\vartheta > 0^{\circ}$
 - Kracow Recoil Filter Detector (\rightarrow very welcome in G2 !)
 - other ideas ...

(Unequaled) gain in sensitivity achievable with a ER analyzer

 \checkmark Tagging based on γ s or light particles difficult, namely with RIBs

✓ Accurate Doppler correction

Charge equilibration

Image size = compromise Q focusing vs. multiple angular scattering

Charge equilibration

Achievable mass resolution at very low pressure ?

Fig. 2. Measured focal-plane position spectra for 215 Ac recoils with an incident energy of E = 14.5 MeV measured with HECK at different pressures. The hatched areas denote the satellite peaks mentioned in the text.

Fig. 3. Position spectra calculated as described in the text for ²¹⁵Ac ions with an incident energy of E = 14.5 MeV along the focal plane of the gas-filled separator. Note the shift in position of the mean value towards smaller q-values due to energy loss in the gas.

Background

- -> Peaks attributed to reactions on C and F
- -> In real experiment, (Ca+Sm) ER γ 's should clearly be seen with M γ =2 gate
- -> VAMOS mandatory here to have the desired ER in coincidence

PARIS Collaboration Meeting, Cracow, October 2009

RITU vs. VAMOS

Influence of the dispersion on focal plane position

Limitation of the vacuum mode

Achievement of the gas-filled mode

PARIS Collaboration Meeting, Cracow, October 2009