PARIS: a powerful tool to understand explosive nucleosynthesis

A. Lagoyannis Institute of Nuclear Physics, N.C.S.R. "Demokritos"

Outline	
	1. The problem
	2. Ways of coping with the problem (so far) and their limitations
	3. Need for new tools and/or methods
	4. Extension of the problem to RIB's
	5. PARIS : a very promising solution
	A. Lagoyannis PARIS miniWorkshop, 14 October 2009, Krakow

Natural abundances

- 1. Earth samples analysis
- 2. Photosphere of Sun spectrometry
- 3. Meteorites analysis

p nuclei and p-nuclei abundances

Gamow peaks and windows: the astrophysically relevant energies

Activation: Principle and Setup Requirements p: 3-6 MeV Target C.I. 1. Radioactive product 2. Suitable lifetime (30min - 1 day) 10°, I ≈ 100 nA Multiscaler RBS Irradiation Offline thickness monitor Measurement р n+1Y**Offline Measurement** nХ **HPGe** Irradiation Lead shielding

Activation: The ${}^{74}Se(p,\gamma){}^{75}Br$ example

γ angular distribution measurements: The ⁷⁸Se(p, γ)⁷⁹Br example **Experiment at the 4 MV Dynamitron accelerator at IfS Stuttgart** $^{78}Se(p,\gamma)^{79}Br$ $\pm 15^{\circ}$ $E_{p} = 1.5 \sim 3.5 \text{ MeV}$ 78 Se – metallic: 85 µg/cm² (enr. 97.8%) BEAM all targets on Ta backing **BGO** mask HPGe (ε =100%)

γ angular distribution measurements: The $^{78}Se(p,\gamma)^{79}Br$ example

γ angular distribution measurements: the ($\alpha,\gamma)$ problem

The $4\pi \gamma$ -summing method: The principle

The 4π γ-summing method: The setup

No "real" experimental solution

The $4\pi \gamma$ -summing method: Efficiency calculation

The 4π γ-summing method: Efficiency check with known reactions

(α, γ) results: Comparison with theory

Alpha-particle capture reaction cross-section systematics

Capture reactions in inverse kinematics

Capture reactions in inverse kinematics: The target

Capture reactions in inverse kinematics

Experiment at Jyväskylä ⁴He(⁷⁸Kr,γ)⁸²Sr Beam: ⁷⁸Kr Target: ⁴He implanted Al-foils Detection of γ's with JUROGAM

array of 43 Compton-suppressed HPGe detectors

