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• At high temperatures, the total nuclear energy can be
approximated by the macroscopic energy expression only

• The angular momentum effects can be treated, to the
first approximation classically

Etotal({def.}; I) = Emacro({def.}) +
~2

2J {def.}
· I(I + 1)

• Conclusion:

Using the macroscopic energy as optimal as possible will
be of importance: in our case → the LSD Model
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Heuresis of LSD: Universally Equidistant Surfaces

• Let a closed surface be given together with an infinity of surfaces ob-
tained, by construction, through a point-after-point perpendicular shift to
the distance ∆s (’Steiner sheets’).

S

S2

1

∆S = S 1 − S 2

Universally
equidistant

surfaces

• Let κ ≡ 1/R1 + 1/R2 be a local average curvature. Then the volume V,
the surface area S and the average curvature L can be expressed as:

V ≡ 1
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satisfy, as one can demonstrate:

L(s) =
dS
ds

=
d2V
ds2

and consequently the following Taylor series expansions hold

V(s) = V0 + S0 s + 1
2
L0 s2 + . . . S(s) = S0 + L0 s + . . . ,
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Conclusions for the Macroscopic Models

• The nuclear surface energy comes from the nuclear matter contained in
a certain surface region whose magnitude is determined by its diffusivity.

Surface

{
’Surface region’

Figure: For Steiner sheets and relatively thin skin (small surface region)
the amount of nuclear matter contained in the surface region is approxi-
mately proportional to the volume of the surface region.

• The volume of the ’surface region’, VS , is approximated by

Esurf ∼ VS ∼
∫ s2

s1

S(s)ds ∼
∫ s2

s1

[S0 + L0s ] ds
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Conclusions for the Macroscopic Models (II)

• Repeat: The volume of the ’surface region’, VS, is approximated by

Esurf ∼ VS ∼
∫ s2

s1

S(s)ds ∼
∫ s2

s1

[S0 + L0s ] ds

wherefrom

Esurf ∼ S0 (s2 − s1)︸ ︷︷ ︸
CS(Z,N)

+L0 (s2
2 − s2

1)︸ ︷︷ ︸
CL(Z,N)

so that

Esurf = CS(Z, N) · S0 + CL(Z, N) · L0

• Conclusion: The surface energy is split now into two terms, one pro-
portinal to the surface area and one proportional to the average curvature
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Conclusions for the Structure of Esurf

• The nuclear surface energy can be decomposed into at least two terms
whose A-dependences are different: A2/3 and A1/3

• At the same surface area S0 two nuclei differing by average curvatures
L0 and L ′

0 , will have different surface energies

• Since the proportionality coefficients CS(Z, N) and CL(Z, N) are in fact
’functions of the nucleus’, it follows that in two different nuclear regions
the relative proportions of the surface-area term to the surface-curvature
term will be in general different (e.g. vanishing surface-curvature)

• The surface energy is proportional to the volume of the surface region

• There is no a priori statement about the sign of curvature contributions
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The Physics of the Nuclear Surface

• The fit of parameters of the extended formula to 2772 masses improves
the results for the barriers by better than a factor of 4 (!!)
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Figure: Results of the fitting of the parameters to the experimental masses
give simultaneously and improvement in the description of the experimental
fission barriers (left); fit performed under the same conditions but without
curvature terms (’traditional’) is given for comparison on the right.
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About the Method Used in this Work:

Macroscopic Energy Calculations
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About the Method of Calculations in this Work:

Macroscopic energy calculations

• In the past, often the Yukawa-folded approach has been used;

• In such an approach the surface energy is obtained through a
procedure using the Yukawa-folding function F (|~r −~r ′|, a)

• The diffuseness parameter a serves to collect the contributions
from the nuclear surface region only

• The folding procedure results in a dangerous loss of sensitivity
with respect to high-order multipoles

• Also the fission barrier-heights especially for the lighter nuclei do
not correspond well with the experimental data
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Macroscopic Energy Calculations: Stiffness Pathology

• The folding procedure and the optimally fitted parameters both result
in a characteristic loss of sensitivity with respect to high-order multipoles:
Stiffness remains weak at increasing multipolarity
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Figure: At large elongation, Yukawa-folded macroscopic energies depend
relatively weakly on the higher order multipoles: β6, β8, β10, etc.
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The Final LSD Macroscopic Energy Expression

• Mass-fits are improved slightly with respect to other models but the
fission barriers are improved considerably;

• The fission barriers involve large deformations where the curvature of the
nuclear surface plays an important role;

• This significant improvement confirms the right physics:

Elsd(Z ,N; def ) = bvol{1− κvol [(N − Z )/A]2}A

+ bsurf {1− κsurf [(N − Z )/A]2}A2/3Bsurf (def )

+ bcurv{1− κcurv [(N − Z )/A]2}A1/3Bcurv (def )

+
3

5
e2 Z 2

r ch
0 A1/3

BCoul(def )

+ Emicr (Z ,N; def )

+ Econg (Z ,N; def )
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LSD - Some Illustrations

Comparison of the model results: Extended Thomas Fermi with Skyrme Interaction (ETFSI), Lublin-Strasbourg Drop

(LSD) and the ’traditional’ one (NLD). The logarithms of the spontaneus fission half lives are given for qualitative

comparison (right scale)
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LSD - Some Illustrations

Difference between theoretical and experimental fission barriers heights.

J.Dudek, K.Pomorski, Phys. Rev. C67 (2003) 044316
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Jacobi Shape Transition in Dy

152Dy -hyperdeformed nucleus.
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Jacobi Shape Transition in Dy

152Dy -hyperdeformed nucleus.

K. Mazurek, GANIL/IFJ - PAN Jacobi and Poincaré shape transitions...
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Jacobi Shape Transition in Dy

152Dy -hyperdeformed nucleus.
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LSD and Simulation of the GDR Profiles
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Jacobi Shape Transition - Spin Trajectory
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Poincaré Shape Transition
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Comparison of the evolution of axial and triaxial energy equlibrium for spins I = 50, 60, 70, 76, 82, 88.
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Poincaré Shape Transition
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Poincaré Transition and High Multipoles
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Stabilizing the barrier by minimization over additional deformation parameters: α40.
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Poincaré Transition and High Multipoles
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Poincaré Transition and High Multipoles
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Stabilizing the barrier by minimization over additional deformation parameters: α40α50α60α70α80.
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Poincaré Transition and High Multipoles
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Stabilizing the barrier by minimization over additional deformation parameters: α40α50α60α70α80 α90α100.
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Summary and Conclusion

• The LSD model used here describes the fission barriers sig-
nificantly better than the preceding models

• Consequently, it is well suited for the realistic calculations
of the nuclear fission barriers at high temperatures

• It is also well suited for simulation of the spin-dependence
of the classical energies as functions of deformation

• According to calculations the Poincaré transitions compete
with the Jacobi shape transitions

• Since the Poincaré shape transitions arrive relatively sharply
in function of spin - its experimental manifestation should be
an abrupt increase of the fission-fragment mass-asymmetry
with increasing spin
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This is a very well defined
experimental program !
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