

D. Beaumel, IPN Orsay

PARIS meeting, Krakow, Oct. 2009

"Flagship reactions" discussed during collaboration meeting at Huelva

- ✓ Representative of our Physics program
- ✓ Relevant to define our specs (simulations)

Two main topics :

> Shell structure evolution using 1-nucleon transfer reactions

- Provide E_x, I (j), S
- Various probes (p,d,t, ^{3,4}He, ^{6,7}Li)
- No need go very far from stability
- Good probe of strength fragmentation
- Proton shell occupation (d,³He) → (⁷Li,⁸Be)
- > Study of pairing far from stability
 - Using (p,t) and (t,p) reactions
 - Energies of 0+ (and 2+) states, enhancement factors, ...

Determine the evolution of s.p.e's around N=82

(Cf Lol by O.Sorlin & K.L. Kratz)

How to proceed ?

Compare the s.p.e's between 132 Sn (Z=50) and 130 Cd (Z=48)

- np monopole matrix elements + occupancies properties of nuclear force
- → predict evolution of s.p.e. down to ¹²²Zr (Z=40) location of the astrophysical r process

Experimental tools

Transfer : (d,p) (α ,³He) for valence states / (d,t) or (p,d) for occupied states

- Beam : energy : from 5 to ~10 A.MeV intensity : > 10⁴pps isotopes ¹³²Sn, ¹³⁰Cd, ¹²⁸Pd ! divergence ~ mrad energy resolution < 1%
- Tracking : beam position ~ 0.5mm accuracy, min. straggling, high freq, good timing
- Detector : highly segmented Si detector 4π coverage/ see LOI Gaspard with γ -ray detection

Spectrometer : in principle not mandatory/ separate mass, charge states, beam rejection

Shell structure evolution - II 8 (a) (b) pf shell Appearance/disappearance pf shell ²⁴0₁₆ ³⁰Si₁₆ 0d_{3/2} of magic numbers: N=20 ²⁴O (N=16) 0d3/2 0 1s_{1/2} $1s_{1/2}$ How about in heavier nuclei? (c) (d) j_= I - 1/2 Case of proton orbits, Z=51 1d_{3/2} j_>= I +1/2 neutron

MF calculation with tensor force (T.Otsuka et al, PRL2006)

 $1d_{5/2}$

proton

Tensor force needed
 TF effect ~ S.O. splitting change due to n-skin

tenso

force

n

Possible study: $^{126-134}$ Sn(α ,t)(3 He,d) at ~10MeV/u

Recent study: $i_{13/2}$ - $h_{9/2}$ gap in (stable) N=83 isotones using (α ,³He) 12MeV/u

104

Neutron

number

Evolution of proton h11/2-g7/2 gap from N=64

82

^ASn(α ,t) ¦s.p. states ?

90 94

Energy [MeV]

0

64

10 MeV/u

GT2-D1S-EXP-

Probing pairing evolution through pair transfer

 2-neutron (and 2-proton) transfer have been used to probe pairing <u>EX</u>: Early work by Broglia et al. (~ 70's) *What are the dynamical implications of pairing correlations ?* Similarity between pairing field and 2-body transfer operator → use (p,t) and (t,p) reactions (L=0,S=0,T=1 transfer) "pairing model"

Shape deformations \leftrightarrow Pairing distortions

- Pairing rotations and vibrations
- ✓ Superfluid phase transitions
- ✓ Particle-pairing coupling
- ✓ GPV

Evolution of pairing with Isospin ?

> More recently:

2n transfer amplitudes are sensitive to the surface enhancement of the pairing – case of ¹³²⁻¹³⁸Sn (M.Matsuo et al.)

Now under study at IPNO : DWBA calculation of ¹²⁴⁻¹³⁶Sn(p,t) reaction with HFB-QRPA form factors using various pairing interactions

Methodology: Missing mass measurements

From SISSI/SPIRAL to Spiral 2

Light ions (A≤40) → Heavier ions (Fission fragments) Increased level densities

Lower Incident energies \rightarrow shift of (E, Θ) plots

To meet these challenges :
Detect particle & gamma in coincidence with high eff. "Energy tagging"

Better than 50 keV energy resolution
Use thicker targets

Improve PID of low energy particles (PSA)
Improve capability of multi-reaction studies
Integrate new light-ion targets

The GASPARD Collaboration

• France:

- CEA-Bruyères-le-Châtel
- GANIL
- IPN-Orsay
- CEA-Saclay
- IHPC Strasbourg
- Germany:
 - GSI
- Hungary:
 - ATOMKI Debrecen
- India:
 - Saha Institute of Nuclear Physics, Kolkata
- Italy:
 - INFN-Catania

- Netherlands: – KVI
- Poland:
 - A. Soltan Institute for Nuclear Studies, Warsaw
- Spain:
 - Huelva University
 - Santiago de Compostela University
 - Sevilla University
- United Kingdom:
 - CCLRC Daresbury Laboratory
 - Liverpool University
 - Paisley University
 - Surrey University

~ 80 participants

Management:

- > Project leader : D. Beaumel (IPNO)
- Management Board :
 - **D. Beaumel (IPNO)**
 - W. Catford (Surrey)
 - I. Martel (Huelva)
 - E. Pollacco (Saclay)
- Liaison with GANIL: O.Sorlin (GANIL)

Working Groups

- Physics case
- > Physics simulations
- Silicon detectors and PSD
- FEE, C&C and DAQ
- **O.Sorlin (GANIL)**
 - M. Labiche (Daresbury)
 - J.Duenas (Huelva)
 - F.Druillole (Saclay)
- A. Gillibert (Saclay) Targets and beam tracking
- > Design/Integration Coupling with other devices W.Catford (Surrey)

Stated during the last collaboration meeting:

> No need to detect high energy particles with crystals in 4π

Possible to decouple the PA and the GA

Road is open to built a PA compatible with EXOGAM2, PARIS and AGATA

Gamma Array Specifications

Energie resolution

better than 50 keV (FWHM) for 1 MeV gamma-rays

Dynamic range

- 0.1 to 5 MeV for gamma-rays
- Stops high energy light particles (~100MeV)

> Total detection efficiency

~ 75% for 1 MeV gammas

Granularity

- NOT determined by Doppler
- Multiparticle events detection
- Particle-gamma pile-up
- Technical aspects (size of APD/PMT,...)

Particle Array Specifications

o Position resolution

~1mm resolution over ~4 π

o Energy resolution – dynamic range

< 40 keV ; 100 keV – 1 GeV Multidynamic ranges and shaping low threshold good linearity

o Particle ID

- ➢ 0.2-2MeV/u: TOF
- PSD above 1.5-2 MeV/u
- E-DE beyond punch-through

o Low Mass budget

Low $\gamma\text{-}\text{ray}$ absorption in the mechanics and FEE

but lots of electronics channels

→ A CHALLENGE !

2 combinations under study:

"with thin layer"
 40 μm, ~3mm pitch, PSA
 300 μm, 1mm pitch
 1500 μm

"Full digital" 300 μm, 1mm pitch, PSA 1500 μm

~ 15000 channels

R&D for the Si array

PULSE SHAPE ANALYSIS

1) The use of strips

- 2) Energy limits
- 3) Homogeneity of the silicon wafers
- 4) Channeling effects
- 5) Charge/current input
- 6) Sampling rate/resolution
- 7) Detector thickness dependence
- 8) PSA and radiation damage...

Within **GASPARD** the program is lead by the Huelva group (Including V. Parkar, postdoc from SPIRAL2PP)

IPNO in charge of simulations of detector's response

Collaboration with the FAZIA group

Si test telescope for GASPARD/HYDE

Possible test bench: (MUFEE+MUVI) + (PACI+MATAQ) + GANIL DAQ

Workplan for PSA R&D (2009-2010)

- Test of BB7-1500 detectors ordered
- > Purchase strip detectors BB12 and 20 μ m
- Complete prototype telescope: mechanics and connectics
- Setup Bench
- Perform test experiment (Orsay tandem)
- Analyze data
- > PSA techniques (signal momentum, average shape, neural networks,...)
- Simulations of detector's response

Pure and windowless targets are crucial for : > Density/Energy loss ¹³²Sn(d,p) at 10 MeV/A For same ΔE (63 MeV) CH2,10 µm N = 7.7 10¹⁹ at/cm2 H H2, 61 µm N = 2.6 10²⁰ at/cm2 H factor of 3.5

Use with high intensity beams

- Less beam scattering
- Less background reactions (Need of spectrometer)

The CHYMENE project

Cible d'HYdrogène Mince pour l'Etude des Noyaux Exotiques A. Gillibert (Saclay) <u>Collaboration:</u> IRFU/SPhN (Saclay), SBT (Grenoble), PELIN Lab. (St Petersburg) R&D is funded

Test in June 2007 of a H_2 target \rightarrow Thickness \approx 200 μ m

AIM: 50 μ m or below

Simulations for GASPARD

Angel Sanchez Benitez, University of Huelva Marc Labiche, STFC Daresbury Nicolas de Séréville, IPN Orsay

Main framework: GEANT4

• Monte-Carlo simulation code written in C++

Starting point: NPTool

- Initially developped at IPNO for simulating the MUST2 array (Adrien Matta)
- For the moment only charged particles detectors are included, but it can be easily extended to any other detector

NPTool package

NPSimulation:

- Efforts have been put in a flexible design:
 - Few files need to be added/modified in order to include a new detector
 - The same applies for new event generators
- Simple use:

./Simulation 60Fe.reaction gaspardFull.detector

• Output is in the ROOT format

NPAnalysis:

- Set of tools (macros, programs) analysing the output file
- Calculate efficiency detection, excitation energy, ...

Input files (1): Detector

Adding a new geometry is creating a new xxx.detector file

Input files (2): Event generator

Available geometries

Barrel with trapezoid detectors + End-caps with trapezoid and annular detectors

Sphere paved with 40 5x5 cm² square detectors

d(132Sn,p)133Sn @ 10 MeV/A

60.17 frames per second

- 3-layer telescopes (S=5x5cm²)
- \bullet 300 $\mu m,$ 2mm pitch
- 2 layers of 1000 μm

D_{Target} = 10cm

Studies in the near future

- Study of detector granularity for different physics cases and effect on excitation energy, angular resolution,...
- Acceptable target thicknesses with SPIRAL2 beams
- Effect on excitation energy when no beam tracking (high intensity beams @ SPIRAL2)
- Integrate gamma detectors / upgrade event generator Compare efficiency of MUST2+Exogam versus GASPARD + AGATA/PARIS

- > Fit inside the Agatha diameter (R 230mm)
- > Use 4 inches silicon detectors
- Distance to target ~150 mm

Hyde (Same barrel but 2 different end-caps)

Truncated icosahedra

Ph. Rosier, IPNO

Towards a "GaspHyde" proposal

Integration principle

Integrate silicon detectors inside a vacuum 4π detector with electronics outside

PARIS-GASPARD meeting - Feb 2008

> Points discussed:

- Timescales and specifications of the two calorimeters
- How to concert the two projects ?
- Can the arrays be made compatible ?
- How to make both compatible with AGATA whose design is already fixed ?
- Could PARIS go under vacuum and be particle detector of GASPARD ?
- Joint simulations of PARIS and GASPARD

PARIS-GASPARD synergy group

(J.A. Scapaci (chair) D. Jenkins, A. Maj, J.P. Wieleczko (PARIS) D. Beaumel, W. Catford, M. Labiche)

Comparison specs of PARIS/GASPARD (minutes of meeting)

 $E_{\gamma} = 0.1 - 5$ MeV for GASPARD c.p. 0.1 - 50 MeV for PARIS

 $\epsilon \sim 75$ % for GASPARD c.p. > 75% for PARIS

Resolution better than 50 keV for 1 MeV (COMMON)

Granularity 100- 200 elements (COMMON)

Inner radius ~20 cm (COMMON)

<u>Key issue</u>: For GASPARD shall the crystals be used to detect high energy particles (under vacuum) ?

Today's "best setup" for Direct reactions

Nice but:

- > Poor efficiency for γ -ray detection
- Strong limitation for targets

Pairing vibrations

Located near closed-shells Fluctuations of the pairing field \rightarrow collective oscillations Basic modes : pair addition/removal phonons

- ➤ G.S. energies
- > G.S. \rightarrow G.S. transfer σ
- \succ G.S. \rightarrow second 0⁺ transfer σ

<u>Region around ²⁰⁸Pb</u> (∆=0)

Model predictions:

- Harmonic spectrum
- Stripping N₀→N₀+2→N₀+4... have enhanced GS transitions with 1:2:3... ratios
- Same for pickup
- > 2-phonon at 2xEg.s.
- 2-phonon state with GS/P.V. intensity ratio ~ 1

Good agreement with data

Study around ¹³²Sn using (p,t) and (t,p) reactions

Other reactions discussed

- Radiative captures / Direct measurement /p nuclei
- Resonant elastic scattering
- Resonant inelastic scattering
- Inelastic scattering and angular correlation technique
- Narrow unbound states
- Gamma transitions in unbound nuclei
- Quasi-bound unbound nuclei

- Particle-gamma coincidences
 - Fact ~10 in energy resolution
 - Fact ~7 in efficiency (w/r MUST2+TIARA+EXOGAM)
- Multireaction capababilites
 - Coupled-Channels analysis
- Improve PID for light particle ToF issue
 - Tractability
 - compactness
 - Use with High Int. beams
 - t/³He; ⁶Li/⁶He
- Integrate special targets
- Modularity Coupling with other devices (AGATA,..)

TOF PSD

∆E-E

E