
Concluding remarks from Detectors WG

	Configuration 1 Phoswich	Configuration 2 Long LaBr3(Ce)	Configuration 3 «Two shells»
Concept	IxIx2 LaBr3(Ce) +IxIx6 Csl(Na) 2x2x2 LaBr3(Ce) + 2x2x6 Csl(Na) or other shape/size ?	IxIx4 (6) <mark>2x2x4</mark> (6) or other shape/size?	IxIx2 LaBr3(Ce) + APD /SiPM and IxIx6 CsI(Na) + PM/SiPM 2x2x2 LaBr3 or other shape/size?
Energy Resolution <3% @ 662 keV	LaBr3 : 4,0% - CsI(Na) : 13,1%	3,08 %	IxIx2 LaBr3 +PM :2.5% + APD : 6% Resolution remains constant with the detector size
Time Resolution < I ns	not done yet	< Ins	< Ins
n/γ discrimination	by time of flight	by time of flight	by time of flight
Pileup	Just started - need more investigation	not done yet	not done yet
Cross-talk	not done yet	not done yet	not done yet

1. Need to define size/shape

1. Need to define size/shape

• Cubic, cylindrical, tapered, ...

1. Need to define size/shape

• Cubic, cylindrical, tapered, ...

2. Choice of the configuration

1. Need to define size/shape

• Cubic, cylindrical, tapered, ...

2. Choice of the configuration

More promising : «long» LaBr3

• Timing obtained with short LaBr3 detector valid but at the limit for $E_{\gamma} < 121$ keV (1.2ns)

• Price is roughly the same as a phoswich

<u>ceecceceec</u>

General remarks

1. Need to define size/shape

• Cubic, cylindrical, tapered, ...

2. Choice of the configuration

More promising : «long» LaBr3

• Timing obtained with short LaBr3 detector valid but at the limit for $E_{\gamma} < 121$ keV (1.2ns)

• Price is roughly the same as a phoswich

1. Need to define size/shape

• Cubic, cylindrical, tapered, ...

2. Choice of the configuration

More promising : «long» LaBr3

• Timing obtained with short LaBr3 detector valid but at the limit for $E_{\gamma} < 121$ keV (1.2ns)

• Price is roughly the same as a phoswich

General remarks

1. Need to define size/shape

• Cubic, cylindrical, tapered, ...

2. Choice of the configuration

• More promising : «long» LaBr3

• Timing obtained with short LaBr3 detector valid but at the limit for $E_{\gamma} < 121$ keV (1.2ns)

• Price is roughly the same as a phoswich

• If phoswich configuration

• Have a further discussion with Saint-Gobain : CsI(Na), CsI(TI), NaI(TI)

• Investigations on possibility of PSA : is it needed ?

General remarks

General remarks

1. Need to define size/shape

• Cubic, cylindrical, tapered, ...

2. Choice of the configuration

• More promising : «long» LaBr3

• Timing obtained with short LaBr3 detector valid but at the limit for $E_{\gamma} < 121$ keV (1.2ns)

• Price is roughly the same as a phoswich

• If phoswich configuration

• Have a further discussion with Saint-Gobain : CsI(Na), CsI(TI), NaI(TI)

• Investigations on possibility of PSA : is it needed ?

3.PM tubes and HV divider

3.PM tubes and HV divider

• Main results have been obtained with Photonis PMT (future of them?)

3.PM tubes and HV divider

• Main results have been obtained with Photonis PMT (future of them?)

• Some PMT from Hamamatsu give rather good results

deletererererere PHOTON ARRAY FOR STUDIES WITH RADIOACTIVE ON AND STABLE BEAMS

pananananananananananan

General remarks (2)

3.PM tubes and HV divider

- Main results have been obtained with Photonis PMT (future of them?)
- Some PMT from Hamamatsu give rather good results
- But

General remarks (2)

3.PM tubes and HV divider

<u>ceecceceec</u>

• Main results have been obtained with Photonis PMT (future of them?)

• Some PMT from Hamamatsu give rather good results

• But

• we should improve the linearity (HV divider developments)

General remarks (2)

3.PM tubes and HV divider

<u>ceecceceec</u>

- Main results have been obtained with Photonis PMT (future of them?)
- Some PMT from Hamamatsu give rather good results

• But

- we should improve the linearity (HV divider developments)
- energy and time measurements

General remarks (2)

3.PM tubes and HV divider

- Main results have been obtained with Photonis PMT (future of them?)
- Some PMT from Hamamatsu give rather good results

• But

- we should improve the linearity (HV divider developments)
- energy and time measurements

4. Simulations of light collection (LITRANI, GEANT4, ...)

General remarks (2)

3.PM tubes and HV divider

- Main results have been obtained with Photonis PMT (future of them?)
- Some PMT from Hamamatsu give rather good results

• But

- we should improve the linearity (HV divider developments)
- energy and time measurements

4. Simulations of light collection (LITRANI, GEANT4, ...)

• Good agreement with experiments

General remarks (2)

3.PM tubes and HV divider

- Main results have been obtained with Photonis PMT (future of them?)
- Some PMT from Hamamatsu give rather good results

• But

- we should improve the linearity (HV divider developments)
- energy and time measurements

4. Simulations of light collection (LITRANI, GEANT4, ...)

- Good agreement with experiments
- Poor capacity to localize for «big» detectors

General remarks (2)

3.PM tubes and HV divider

- Main results have been obtained with Photonis PMT (future of them?)
- Some PMT from Hamamatsu give rather good results

• But

- we should improve the linearity (HV divider developments)
- energy and time measurements

4. Simulations of light collection (LITRANI, GEANT4, ...)

- Good agreement with experiments
- Poor capacity to localize for «big» detectors
- Should be improve

4.Key Conclusions

• Keep some efforts on both configurations (long LaBr3 and phoswich)

4.Key Conclusions

Keep some efforts on both configurations (long LaBr3 and phoswich)
Investigations on different PMT

- Keep some efforts on both configurations (long LaBr3 and phoswich)
- Investigations on different PMT
- Improvement on simulations of light collections

- Keep some efforts on both configurations (long LaBr3 and phoswich)
- Investigations on different PMT
- Improvement on simulations of light collections
- Investigation with n/γ discrimination, pileup and cross-talk

Concluding remarks

- Keep some efforts on both configurations (long LaBr3 and phoswich)
- Investigations on different PMT
- Improvement on simulations of light collections
- Investigation with n/γ discrimination, pileup and cross-talk
 - with low Ey and high Ey (6 MeV, AmBe,...) sources

Concluding remarks

- Keep some efforts on both configurations (long LaBr3 and phoswich)
- Investigations on different PMT
- Improvement on simulations of light collections
- Investigation with n/γ discrimination, pileup and cross-talk
 - with low Ey and high Ey (6 MeV, AmBe,...) sources
 - then dedicated beam tests (Warsaw laboratory January-March)

Concluding remarks

- Keep some efforts on both configurations (long LaBr3 and phoswich)
- Investigations on different PMT
- Improvement on simulations of light collections
- Investigation with n/γ discrimination, pileup and cross-talk
 - with low Ey and high Ey (6 MeV, AmBe,...) sources
 - then dedicated beam tests (Warsaw laboratory January-March)
- We need more detectors :

Concluding remarks

- Keep some efforts on both configurations (long LaBr3 and phoswich)
- Investigations on different PMT
- Improvement on simulations of light collections
- Investigation with n/γ discrimination, pileup and cross-talk
 - with low Ey and high Ey (6 MeV, AmBe,...) sources
 - then dedicated beam tests (Warsaw laboratory January-March)
- We need more detectors :
 - one phoswich (which size, which second shell ?)

Concluding remarks

- Keep some efforts on both configurations (long LaBr3 and phoswich)
- Investigations on different PMT
- Improvement on simulations of light collections
- Investigation with n/γ discrimination, pileup and cross-talk
 - with low Ey and high Ey (6 MeV, AmBe,...) sources
 - then dedicated beam tests (Warsaw laboratory January-March)
- We need more detectors :
 - one phoswich (which size, which second shell ?)
 - one long LaBr3 (2x2x6)

Concluding remarks

4.Key Conclusions

- Keep some efforts on both configurations (long LaBr3 and phoswich)
- Investigations on different PMT
- Improvement on simulations of light collections
- Investigation with n/γ discrimination, pileup and cross-talk
 - with low Ey and high Ey (6 MeV, AmBe,...) sources
 - then dedicated beam tests (Warsaw laboratory January-March)
- We need more detectors :
 - one phoswich (which size, which second shell ?)
 - one long LaBr3 (2x2x6)

Special thanks for all WG members for the work done and the fruitful discussion