NEDA (NEutron Detector Array)

J.J. Valiente Dobon (LNL-INFN) on behalf of the NEDA collaboration

Organization

Spokeperson: J.J. Valiente Dobon (LNL-INFN)

GANIL LIASON: M. Tripon (GANIL)

Steering committee:

- -B. Wadsworth (U. Of York)
- -N. Erduram (U. Of Istanbul)

-L. Sttugge (IRES – Strasbodurg)

- -J. Nyberg (U. Of Uppsala)
- -M. Palacz (U. Of Warsaw)
- -A. Gadea (IFIC Valencia)

<u>INFN</u> : coordination of the overall design, defining the parameter list.

UU, COPIN, IU, AU, NU: simulations and design: definition of the geometry, Monte Carlo simulations.

UU and IRES: tests of new materials for neutron detection.

INFN, KTH, GSI : tests of the detector performances using digital electronics.

FP7-INFRASTRUCTURES-2007-1 SPIRAL2 PREPARATORY PHASE

Working groups

•Detector characteristics (Report on physics of interest, this will help to define the detector specifications).

•Responsible: B. Wadsworth

•Geometry (Make a full study of geometry to determine (materials) efficiency, reduce cross-talk, ... Comparison between different codes:

Genat4, MCNP-X. Simulate effect of other ancillaries, neutron scattering.).

•Responsible: M. Palacz

•Study New Materials (Exploring new materials, solid scintillators, deuterated liquid scintillators).

•Responsible: L. Stuttgé

•Digital Electronics (Flash ADCs, commercial, EXOGAM-like electronics, ..)

•Responsible: A. Gadea

•PSA (Simulations of Pulse shapes, PSA algorithms, ...).

•Responsible: J. Nyberg

•Synergies other detectors (Detectors that can be considered in synergy with the new neutron wall. EXOGAM2, PARIS, AGATA, FAZIA, GASPARD, DIAMANT, DESCANT, DESPEC/HISPEC, NEUTROMANIA, ...).

•Responsible: P. Bednarczyk

Physics with NEDA

Nuclear Structure

- Probe of the T=0 correlations in N=Z nuclei: The structure beyond ⁹²Pd (LNL, GANIL, Stockholm, York)
- Coulomb Energy Differences in isobaric multiplets: T=0 versus T=1 states (LNL, GANIL, York)
- Coulomb Energy Differences and Nuclear Shapes (York, LNL, GANIL)
- Low-lying collective modes in proton rich nuclei (Istanbul, Valencia, LNL)

Nuclear Astrophysics

- Element abundances in the Inhomogeneous Big Bang Model (Weizmann, Soreq, GANIL, York collaboration)
- Isospin effects on the symmetry energy and stellar collapse (Naples, Debrecen, LNL, Florence collaboration)
- Nuclear Reactions
 - Level densities of neutron rich nuclei (Debrecen, Naples, LNL, Florence collaboration)
 - Fission dynamics of neutron-rich intermediate fissility systems (Naples, Debrecen, LNL, GANIL)

First day experiment

Nuclear structure N=Z beyond ⁹²Pd : ⁹⁶Cd, etc

NEDA+PARIS experiment

Second day experiment.

Low-lying collective modes in proton rich nuclei

Evolution of low-lying E1 strength in proton-rich nuclei

Paar, Vretenar, Ring, Phys. Rev. Lett. 94, 182501 (2005)

RHB+RQRPA isovector dipole strength distribution in the N=20 isotones. DD-ME1 effective interaction + Gogny pairing.

NEDA+PARIS experiment

Spiral 2

Light and N=Z RIB at SPIRAL 2 Rough Estimation of Yields (Examples)

Courtesy M. Lewitowicz	RI Beam	Reaction	Production method	Yield (min max.) in pps	
	¢Не	9Be(n,α)6He	ISOL	5X10 ⁷ - 10 ¹²	
	¤С	$^{14}\mathcal{N}(p,\alpha)^{11}C$	ISOL	10 ⁷ - 3X10 ¹¹	
	15 <i>0</i>	²5N(d,2n)²5O	ISOL	3X10 ⁷ - 10 ²⁰	
	¹⁸ Ne	²⁹ F(p,2n) ²⁸ Ne	ISOL	6x10 ⁶ - 7x10 ⁹	
	54 A Y	⁵5Cl(p,2n)⁵4Ar	ISOL	2X10 ⁶ - 2X10 ⁸	
	⁵⁶ Ní	58Ni(p,p2n)56Ni	Batch mode	2X104 - 10 ⁸	
	⁵⁸ Cu	⁵ ^{\$} Nĩ(p,n) ⁵⁸ Cu	Batch mode	10 ⁴ - 10 ⁸	
	^{so} Zn	²⁴ Mg+ ⁵⁸ Ní	In-flìght	< 3X104	

The reaction to study the Pigmy resonance in ⁴⁴Cr

 ${}^{34}\text{Ar} + {}^{16}\text{O} \rightarrow {}^{44}\text{Cr} + \alpha 2n \; ({}^{34}\text{Ar} \; 10^8 \text{ pps})$

Problem definition

-Neutron detectors to be used coupled to AGATA/EXOGAM/PARIS and if requested open to do Neutron spectroscopy (energy of the neutrons).

-Previous experience with the NWall (BC501)

-High efficiency 30% for one neutron.

-Good gamma/neutron discrimination.

-Low efficiency for 2n (2-3%) or more neutrons.

-Problems with cross talk

Neutron Wall: N=Z-2

²⁴Mg⁽³²S,2n)⁵⁴Ni

²⁸Si⁽²⁸Si,2nα)⁵⁰Fe

S. Lenzi et al., PRL87, 122501 (2001)

A. Gadea et al., PRL97, 152501 (2006)

Cross talk – low 2n cross section

J. Ljungvall et al., NIMA528 4 (2004)

•High cross talk between neighboring detectors \rightarrow 7% all the events.

- •It is not possible to differenciate between 2n real events or just 1n scattered.
- •Therefore neighbouring detectors are dismiss in the analysis and the efficiency decreases to 2-3%.

Possible to improve 2n efficiency using TOF among detectors

The aim of NEDA is to be able to distinguish between real 2n events and scattered neutrons \rightarrow Increase of the 2n efficiency.

Strategy of NEDA

-Use of the TOF information in addition to the measured energy to disentangle the 1n scattered events from the real 2n channels

-Use of the deuterated scintillator BC537

-Pulse height proportional to incident neutron energy

-Provides another method of determinig neutron energy beyond TOF

-Can lead to a better discrimination of high multiplicity neutron events and scattered events.

-Possible better gamma-neutron discrimination, since more events are at higher energies.

BC501 vs. BC537 response

Courtesy of P. Garrett University of Guelph.

Simulations Validation

- Neutron HP model in G4.9.2.p01 (rel. March 2009) much improved comparing to earlier versions
- Total cross sections and angular distributions for elastic scattering on p, d, and ¹²C reasonable
- Correct (high energy) γ-ray lines produced
- Inelastic interactions not fully validated yet.
 Wrong kinematics (angular distributions?) in the ¹²C(n,α)⁹Be reaction.
- Important reactions still missing, like ${}^{12}C(n,n')3\alpha$

Existing defficiencies not significant in the <~10MeV energy range, which if interest for NEDA

$\sigma(\theta)$ elastic neutron scattering on d

Light output

The light-output L is usually given in MeVee: the particle energy required to generate 1 MeVee of light is defined as 1 MeV for fast electrons
L is generally less for heavier particles such as protons, deuterons, alphas, beryllium, carbon...

• Therefore, the light output L in a certain path dx is a function of the deposited energy E in dx: L(E)

Dekempeneer et Liskien NIM A 256 (1987) 489-498: NE213

Geometries

- •There are two possible geometries, either spherical or planar.
- •The spherical geometry presents the full symmetry.
- •The planar has some advantages, than the spherical do not present.
 - -Flexibility different possible arrangements of the detectors
 - -Different focal posistions (500cm, 1000cm, 2000cm)
 - -Budget issues

DESCANT geometry

Efficiency for the planar

Versatility of the planar

- •2.5 mm AI encapsulation
- •159 mm depth
- •.60 side lenght.

Efficiency of NEDA with 61 hexagonal detectors around 30%

Discriminating neutron/gamma

 Pulse shapes from the detector differs between neutrons and gamma rays

 Usually both pulse shape analysis using analogue electronics and the time-offlight information is used for discrimination

Digital electronics: PSA

It is possible to obtain better quality using same algorithms but digital electronics

Naciear Instruments and Methods in Physics Research A 594 (2008) 79–89
Contents lists available at ScienceDirect
Nuclear Instruments and Methods in
Physics Research A
journal homepage: www.elsevier.com/locate/nima

Digital pulse-shape discrimination of fast neutrons and γ rays

P.-A. Söderström*, J. Nyberg, R. Wolters

Department of Physics and Astronomy, Uppsala University, SE-75121 Uppsala, Sweden

Digital electronics: Neural Network

Applying an artificial neural network can increase the quality even further

Nuclear Instruments and Methods in Physics Research A journal homepage: www.elsevier.com/locate/nima

Nuclear Instruments and Methods in Physics Research A I (IIII)

8 METHOD IN PHYSICS DESEADOR

An artificial neural network based neutron-gamma discrimination and pile-up rejection framework for the BC-501 liquid scintillation detector

E. Ronchi*, P.-A. Söderström, J. Nyberg, E. Andersson Sundén, S. Conroy, G. Ericsson, C. Hellesen, M. Gatu Johnson, M. Weiszflog

Department of Physics and Astronomy, SE-75120 Uppsala, Sweden

 $P = sqrt(\epsilon_n^2 + \epsilon_v^2)$

Digital electronics: EXOGAM - NEDA

M. Tripon

The basic diference EXOGAM/NEDA is the higher frequency of the ADC

Commercial electronics: Struck

4 channel VME digitizer/transient recorder with a sampling rate of up to 500 MS/s (for the individual channel) and 12-bit resolution

Programmable FPGAs

Avalanche Photodiodes

SPMPlus

- Direct replacement for photomultiplier tube
- Insensitive to magnetic fields
- Can operate in vacuum
- Large sizes possible
- Attractive for simultaneous PET and MRI scanning
- Gain stabilisation as function of temperature must be achieved

Synergy with PARIS – D. Jenkins

BC501 and BC537 detectors

Currently buying commercial detectors for tests: ELJEN, BICRON?

ELJEN technology

Summary and future work

- NEDA Looks at improving efficiency for 2n channels BC537
- Validated simulatons realistic results for BC501 and BC537
- Included light production according to latest measurements
- PSA algorithms to discriminate neutron-gamma Neural Network great perspectives.
- Synergies PARIS: Physics and SPMPlus EXOGAM: electronics

FUTURE WORK

- Currently buying BC537 and BC501 commercial detectors to test:
 - cross talk
 - light production
 - PSA
- Test of SPMPlus from York in BC537 and BC501 Soon?
- Development of electronics and currently buying a commercial Struck digital board – programmable FPGA

Light output

Time scale

	2008	2009				2010		
	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3
Validation GEANT4 neutorn simulations								
Geometry definition								
Digital algorithms for PSA								
Detector prototype								
Test prototype								
Electronics								
Negoziations MoU								
MoU signature								

EXOGAM array

ADVANCED GAMMA TRACKING ARRAY