GEANT4 simulations of a single LaBr₃(Ce) detector and large Nal(TI) detector arrays

Anil Kumar Gourishetty

Instytut Fizyki Jądrowej, Krakow

15th Oct.2009 PARIS Meeting, IFJ PAN, Krakow

Collaborators

- Indranil Mazumdar
- D. A. Gothe

Dept. of Nuclear and Atomic Physics, Tata Institute of Fundamental Research (TIFR), Mumbai

Plan of the Talk

- GEANT4 simulations of large arrays of NaI(TI) detectors in soccer-ball and castle geometries
- A comparative study efficiencies of LaBr₃, NaI(Tl), BaF₂.
- Close-geometry efficiency calibration and true coincidence summing correction

Aim

- To calculate the detection efficiencies of the individual detectors and the entire 4π array using GEANT4 and comparison with measurements.
- To carry out efficiency measurements and GEANT4 simulations for a smaller array of 14 straight NaI detectors of hexagonal cross sections packed in castle geometry and the comparison of the results with the 4π array.
- To calculate fold distributions for different gamma multiplicities for both the 14 elements and the 4π array.

Pentaagon

Hexagon

Specifications

Length 76 mm Sides 44 mm 88 mm

PMT

3" dia XP3332/PB

Energy Resolution ~6.5% @ 661 keV

Bias

+800 V

32 detectors, Soccer ball geometry

14 detectors, castle geometry

Simulated diagrams using GEANT4

Simulated and measured efficiencies for a single detector for 662 keV at a distance of 10 cm from the centre of the face of the detector.

Configuration	Absolute ((in	efficiency %)	Photo peak efficiency (in %)		
	GEANT4	Exp	GEANT4	Exp	
Conical Hexagon (3")	2.98 ± 0.03	3.03 ± 0.15	1.70 ± 0.04	1.63 ± 0.08	
Conical Pentagon (3")	2.00 ± 0.03	2.06 ± 0.10	1.06 ± 0.03	1.03 ± 0.05	
Small Hexagon (4")	1.03 ± 0.06	1.08 ± 0.05	0.47 ± 0.03	0.47 ± 3.90	

(G. Anil Kumar, I. Mazumdar, D.A. Gothe, 2008 IEEE Nuclear Science Symposium conference record, N17-1, p. 1640, Dresden, Germany)

Simulated and measured efficiencies for different configurations of conical pentagons and hexagons

Configuration	Absolute (in	efficiency %)	Photo peak efficiency (in %)		
	GEANT4 Exp		GEANT4	Exp	
12 pentagons + 20 hexagons	83.8 ± 1.13	77.5 ± 3.95	59.5 ± 1.31	54.5 ± 2.41	
10 pentagons + 20 hexagons	79.4 ± 1.10	76.8 ± 3.84	49.0 ± 1.23	46.5 ± 2.32	
10 pentagons + 19 hexagons	76.4 ± 1.09	74.1 ± 3.70	46.5 ± 1.08	43.8 ± 2.19	
9 pentagons + 20 hexagons	77.5 ± 1.06	75.0 ± 3.75	47.5 ± 1.38	45.2 ± 2.26	
14 NaI system	40.9 ± 1.90	40.0 ± 2.00	17.2 [±] 1.32	16.0 ± 0.80	

Summary of results on simulated absolute efficiencies for full 4π array and for the castle geometry of 14 elements for different mono energetic gamma rays

Energy	Absolute e (in	efficiency %)	Photo peak efficiency (in %)		
(MeV)	4π array	14 NaI	4π array	14 NaI	
1	74.48 ± 1.16	37.09 ± 1.77	43.46 ± 0.96	13.50 ± 1.12	
5	57.81 ± 1.23	29.65 ± 1.41	19.92 ± 0.72	4.10 ± 0.47	
10	59.73 ± 0.82	32.00 ± 1.19	13.79 ± 0.66	2.00 ± 0.30	
15	62.60 ± 1.30	33.93 ± 1.39	8.67 ± 0.56	0.96 ± 0.21	
20	64.53 ± 0.88	35.28 ± 1.76	4.75 ± 0.32	0.41 ± 0.08	
25	66.30 ± 1.16	36.43 ± 1.58	2.47 ± 0.18	0.17 ± 0.06	
30	67.60 ± 1.18	37.15 ± 1.69	1.24 ± 0.08	0.06 ± 0.03	
35	68.90 ± 1.11	37.98 ± 1.71	0.57 ± 0.14	0.02 ± 0.01	
40	69.80 ± 1.07	37.46 ± 1.47	0.27 ± 0.03	0.009± 10 ⁻³	
45	70.54 ± 1.09	39.09 ± 1.87	0.12 ± 0.02	0.004 ± 10^{-3}	
50	70.63 ± 1.13	39.38 ± 1.72	0.04 ± 0.01	0.001 ± 10 ⁻⁴	

Summary of results on simulated absolute efficiencies for full 4π array of LaBr₃(Ce) detectors for different mono energetic gamma rays

E (MeV)	Absolute Efficiency (in %)	Photo peak efficiency (in %)
0.662	90.00	71.00
1.173	82.60	55.63
1.332	81.00	52.75
5	68.42	32.63
10	71.25	25.64
15	72.70	18.38
20	75.03	11.37
30	78.31	4.41
40	79.73	1.56
50	81.56	0.55

<u>4pi-PARIS – 32 hexagons and pentagons (Dec. 2008) – by G.A. Kumar and I. Mazumdar http://paris.ifj.edu.pl/documents/sim/</u>

Summary

- Extensive simulations have been carried out for calculating the detection efficiencies of the individual detectors and the entire 4π array.
- The total intrinsic and photo peak efficiencies have been measured accurately with calibrated low energy gamma ray sources and are found to be in very good agreement with the simulated results.
- Efficiency measurements and GEANT4 simulations have been carried out for a smaller array of 14 straight NaI(TI) detectors of hexagonal cross sections packed in castle geometry and the results have been compared with the 4π array.
- The fold distributions have also been calculated for different gamma multiplicities for both the 14 elements and the 4π array.

A comparative study of efficiencies of $LaBr_3(Ce)$, NaI(TI) and BaF_2

G. Anil Kumar, I. Mazumdar, D.A. Gothe, Nucl. Instr. and Meth.A, doi:10.1016/j.nima.2009.08.075

Distance (cm)	ε _t	otal	E _{peak}			
	GEANT4	Exp	GEANT4	Exp		
15	0.105 (0.012)	0.114 (0.005)	0.030 (0.004)	0.027 (0.001)		
25	0.041 (0.003)	0.044 (0.002)	0.011 (0.001)	0.010 (0.001)		

Summary

The simulation results are compared with recent measurements reported by other authors for $1" \times 1"$ and for $1.5" \times 1.5"$ detectors. A good agreement between simulations and measurements has been achieved

Simulation results are presented in connection with a proposition for high energy gamma detection using combination of $LaBr_3(Ce)$ with $NaI(TI)/BaF_2$.

Close-geometry efficiency calibration and true coincidence summing correction

Calculation of coincidence summing correction factors Assumptions:

- 1) Point source
- 2) β -radiation absorbed in the detector window

Count rate resulting from full absorption of $\gamma\text{-rays}$ of energy E_1 and E_2 are given by

$$N_1 = A p_1 \varepsilon_{p1}$$
$$N_2 = A p_2 \varepsilon_{p2}$$

where

p₁ is emission probability of γ -rays with energy E₁ p₂ is emission probability of γ -rays with energy E₂ ε_{p1} is photo peak efficiency for gamma rays with energy E₁ ε_{p2} is photo peak efficiency for gamma rays with energy E₂ (T. Vidmar et al., NIM-A 508 (2003) 404) The count rate in recorded full energy peak in the spectrum, however, is smaller. Since each γ_1 is followed by a γ_2 in coincidence, it may happen that both γ -rays are detected, thus leading to a single count. If the energy of γ_1 is totally absorbed, this sum pulse is recorded at an energy between E_1 and $E_1 + E_2$ and the event is lost from the full energy peak of γ_1

 $N'_{1} = A p_{1} \varepsilon_{p1} - A p_{1} \varepsilon_{p1} \varepsilon_{t2} = A p_{1} \varepsilon_{p1} (1 - w \varepsilon_{t2})$

where \mathcal{E}_{12} is total detection efficiency of γ_2

Similarly,

 $N'_{2} = A p_{2} \varepsilon_{p2} (1 - w \varepsilon_{t1})$ $N'_{12} = A p_{1} p_{2} w \varepsilon_{p1} \varepsilon_{p2}$

Three equations and four unknowns if the source is calibrated

If the source is non-calibrated point source,

$$A = N_{total} + \frac{N_1' N_2'}{w N_{12}'}$$

Finally,

$$\varepsilon_{p1} = \frac{\left(\frac{(N_1' - N_2') + \sqrt{(N_1' - N_2')^2 + 4AN_{12}'}}{2A} + \sqrt{\frac{N_1'N_{12}'}{AN_2'}}\right)}{2}$$

$$\varepsilon_{p2} = \frac{N'_{12}}{A\varepsilon_{p1}}$$

$$\varepsilon_{t1} = 1 - \frac{\varepsilon_{p1} N_2'}{N_{12}'}$$
$$\varepsilon_{t2} = 1 - \frac{N_1'}{A \varepsilon_{p1}}$$

Single LaBr₃(Ce) detector

28.5 mm

Nuclide	E ₁ (keV)	E ₂ (keV)	b ₁ (%)	b ₂ (%)
⁶⁰ Co	1173.23	1332.50	99.85	99.98
⁴⁶ Sc	889.27	1120.54	99.98	99.98
⁹⁴ Nb	702.64	871.11	<mark>99.7</mark> 9	99.86
²⁴ Na	1368.63	2754.03	99.99	99.85

G. Anil Kumar, I. Mazumdar, D.A. Gothe, Nucl. Instr. and Meth. A 609 (2009) 183

Simulated true efficiencies for double photon emitters (60Co, 46Sc and 94Nb) and for mono-energetic gamma sources of similar energies

Source	ε _{t1} (%)	ϵ_{+2} (%)	ε _{nl} (%)	ε_{n2} (%)				
			P V	P- ()		Nuclide	Energy	Coincidence summing
⁶⁰ Co	12.63 (1.10)	11.75 (1.14)	1.87 (0.11)	1.60 (0.10)			(keV)	correction factor
		· · · ·						
Mono energetic	10.80 (0.77)	9.74 (1.00)	1.84 (0.16)	1.56 (0.14)	7		1173.23	0.882 (0.075)
						⁶⁰ Co	1332.50	0.873 (0.077)
16								
⁴⁰ Sc	12.67 (0.40)	11.75 (0.46)	2.67 (0.10)	1.97 (0.07)			889.27	0.889 (0.076)
Mono energetic	11 40 (0.87)	10.40 (0.70)	2 60 (0 23)	1.04 (0.17)				
Mono energene	11.40 (0.87)	10.40 (0.79)	2.00 (0.23)	1.94 (0.17)		⁴⁶ Sc	1120.54	0.873 (0.077)
							702.62	0.877 (0.037)
94	12.07.00.00	11.00 (0.10)						
Nb	12.67 (0.46)	11.00 (0.40)	3.61 (0.09)	2.74 (0.07)		⁹⁴ Nb	871.1	0.860 (0.041)
Mono energetic	12.58 (0.95)	11.47 (0.90)	3.64 (0.30)	2.71 (0.24)				
				(0,)				

Nuclide Energy	Energy	Total effic	iency (%)	Photo-peak efficiency (%)		
	(keV)	Measured Simulated		Measured	Simulated	
¹³⁷ Cs	661.6	12.01 (0.60)	12.90 (1.00)	3.41 (0.17)	3.93 (0.34)	
⁶⁰ Co	1173.23	14.39 (2.19)	12.63 (1.10)	1.65 (0.09)	1.87 (0.11)	
	1332.50	13.94 (2.20)	11.75 (1.14)	1.51 (0.08)	1.60 (0.10)	

Energy	Coincidence summing correction factor				
(keV)	Experimental	Simulated			
1173.23	0.860 (0.048)	0.882 (0.075)			
1332.50	0.856 (0.048)	0.883 (0.077)			

Soccer-ball geometry

²⁴Naa

4122 (sum peak)

4000

5000

2754

3000

Castle geometry

Soccer-ball geometry

Castle geometry

Source	ε _{tl} (%)	ε _{t2} (%)	ε _{pl} (%)	ε _{p2} (%)	1 [Source	ε _{tl} (%)	ε _{t2} (%)	ε _{pl} (%)	ε _{p2} (%)
°°Co	68.2 (1.1)	66.7 (1.2)	41.2 (1.4)	37.7 (1.3)		°°Со	36.6 (1.9)	35.2 (1.9)	12.4 (0.8)	11.3 (0.7)
Mono energetic	68.5 (1.3)	66.2 (1.1)	41.0 (1.3)	38.1 (1.0)		Mono energetic	35.7 (1.9)	34.4 (1.7)	12.2 (1.1)	11.1 (1.0)
40Sc	72.6 (1.1)	70.0 (1.2)	49.5 (2.0)	41.5 (1.6)		⁴⁰ Sc	38.8 (1.9)	36.8 (1.1)	14.7 (0.9)	12.8 (0.8)
Mono energetic	73.1 (1.5)	69.2 (1.3)	48.4 (1.5)	42.2 (1.3)		Mono energetic	38.2 (1.8)	36.0 (1.9)	14.6 (1.2)	12.6 (1.1)
⁹⁴ Nb	76.2 (1.1)	73.9 (1.3)	56.2 (2.7)	48.1 (2.3)		94Nb	40.5 (1.9)	38.4 (2.0)	17.2 (0.8)	14.9 (0.7)
Mono energetic	76.9 (1.2)	73.6 (1.2)	55.5 (1.3)	49.2 (1.4)		Mono energetic	40.6 (1.0)	38.7 (1.8)	17.3 (1.4)	15.0 (1.1)
²⁴ Na	68.4 (2.0)	61.9 (2.4)	35.0 (2.2)	23.0 (1.4)		²⁴ Na	36.3 (1.6)	30.4 (2.0)	10.9 (0.6)	6.9 (0.4)
Mono energetic	66.0 (1.2)	57.4 (1.0)	37.5 (1.2)	25.7 (0.8)		Mono energetic	34.2 (1.9)	30.3 (1.6)	11.0 (1.0)	6.7 (0.6)

G. Anil Kumar, I. Mazumdar, D.A. Gothe, Nucl. Instr. and Meth.A, doi:10.1016/j.nima.2009.09.005

Soccer-ball geometry

Nuclide	Energy (koV)	Total effic	iency (%)	Photo-peak efficiency (%)			
	(KCV)	Measured	Measured Simulated		Simulated		
¹³⁷ Cs	661.6	77.7 (3.9)	78.2 (1.1)	55.3 (2.4)	57.7 (1.3)		
⁶⁰ Co	1173.23	71.2 (1.3)	68.2 (1.1)	38.4 (1.6)	40.2 (1.5)		
	1332.50	68.3 (1.4)	66.7 (1.2)	35.9 (1.3)	37.7 (1.3)		

Castle geometry

Nuclide	Energy (keV)	Total effic	iency (%)	Photo-peak efficiency (%)			
		Measured Simulated		Measured	Simulated		
¹³⁷ Cs	661.6	40.0 (2.0)	40.9 (1.9)	16.4 (0.8)	17.2 (1.3)		
⁶⁰ Co	1173.23	38.4 (1.9)	36.6 (1.9)	11.8 (1.6)	12.4 (0.8)		
	1332.50	37.1 (2.0)	35.2 (1.9)	10.9 (1.8)	11.3 (0.7)		

Experimental and simulated coincidence summing correction factors for both the arrays for ⁶⁰Co

Configuration	Energy (keV)	Coincidence summing correction factor	
		Experimental	Simulated
Soccer-ball	1173.23	0.32 (0.02)	0.33 (0.01)
	1332.50	0.28 (0.02)	0.32 (0.01)
Castle	1173.23	0.63 (0.02)	0.65 (0.06)
	1332.50	0.62 (0.02)	0.63 (0.05)

Summary

Close geometry efficiency calibration and coincidence summing correction have been performed for a single $LaBr_3(Ce)$ cylindrical detector, an array of 32 conical NaI(Tl) detectors in soccer-ball geometry and an array of 14 straight hexagonal NaI(Tl) detectors in castle geometry

A good agreement between simulations and measurements has been achieved

The present work demonstrates the reliability of the coincidence summing correction method for efficiency calibration of 3 very different configurations.

"Tamasoma Jyotirgamaya" - From darkness, lead me to light