

PARIS Meeting, IFJ PAN Krakow, Poland 2009

<u>Outline</u>

- Motivation
- Apparatus & Signals
- Phoswich Tests
- Pile-Up Test
- Non-Linearity
- Tests with a Novel SensL LAAPD
- Summary & Conclusions
- Future Work

Motivation: PARIS

- Energy range between 100keV and 50MeV
- Two shells of LaBr₃(Ce) and CsI(Na) crystals
- Different decay times allow for discrimination of signals
- Moveable source distance, more physics cases

Images courtesy of J.Strachan (STFC)

Apparatus & Signals

A Hamamatsu R7057 PMT was bought and a voltage divider was built to a the specifications of a compatible V.D used in previous experiments.

Apparatus & Signals

- Phoswich detector contains 2"x2"x2" LaBr₃:Ce and 2"x2"x6" CsI:Na detectors coupled with Epoxy resin.
- ORTEC 572 Amplifier used for shaping, HV -1200V used.

Apparatus & Signals

- With Unipolar output from Amp, see Bipolar distribution.
- An Amplifier with a faster
 S.T might be needed to read off the last dynode.

Phoswich Tests: Background Spec.

Lower channels cut due to K-Shell X-Rays Intensity.

- FWHM @ 1436keV is 169.10keV, Resolution 4.77%
- Gamma from ²²⁸Th evident at ~2.6MeV?

Phoswich Tests: Previous

- LaBr₃(Ce) ~ 5%, CsI(Na) ~ 7.7% @662keV.
- Shaping Time 250ns (much faster), HV = -1500V
- Tests were done at the IPHC in Strasbourg.

Phoswich Tests: Shaping Times

- Source placed near the end of Phoswich
- Red: S.T = 0.5us, Resolution: 13.09%
- Blue: S.T = 6us, Resolution: 11.69%

Phoswich Tests: Shaping Times

- Source placed near the front end of Phoswich
- Red: S.T = 6us, Resolution: 8.16%
- Blue: S.T = 0.5us, Resolution: 5.50%

Pile-Up Test: ⁵⁷Co Source

- A hot 10mCi (3.7x10⁸Bq) source was used
- Signals were observed to see if fast timing of LaBr₃:Ce can allow for discrimination of individual pulses.

L: Raw Signal (LaBr₃:Ce),R: S.T of 0.5us THE UNIVERSITY of York

Pile-Up Test

There is little to see in the spectrum, complete saturation with this source.

Non-Linearity

Two ⁵⁷Co graphs. Amplifier settings and other conditions set exactly the same. We see a shift based on number of gammas only.

Large Area APD's

- Newly developed SiPMs from SensL provide high gain and low dead space.
- Built in Preamp takes 5V and creates VB~30V
- Sensitive between 400-850nm, peaks @ ~565nm.
- Collectively, large amount of noise, S/N is very small.

Temperature Response of LAAPD

- Labyrinth in the copper plate is pumped with cooled alcohol
- Temperature tests between 2°C and 30°C shows linear degradation in the FWHM of Green LED Signal.

Temperature Response of LAAPD

Resolution of Green LED Vs. Temperature

Graph to show linear relation between Temperature and Resolution

Summary & Conclusions

- Phoswich produced slightly worse resolutions than what was expected. Possibly due to Bipolar output.
- Significant Pile-up with High Gamma Sources greater than ~385 kHz.
- Non-Linearity was seen and this also needs to be investigated.
- The SensL SiPM was found to vary linearly with temperature, with a low S/N ratio for γ sources, higher with α sources.

Future Work

- Investigate non-linearity of Phoswich Detector
- Tests with ²⁴¹Am/⁹Be Neutron Source
- Perform Time Coincidence Measurements with BaF₂ Detector.
- Read individual SensL Pixels to improve S/N in detector

Acknowledgement of Collaborators

P. Joshi¹,D. Jenkins¹, O. Dorvaux², M. Rousseau², Christian Finck² J. Strachan³, A. Smith⁴, B.Wadsworth¹, and the rest of the PARIS collaborators

¹University of York, United Kingdom ²IPHC Strasbourg, France ³STFC Daresbury, United Kingdom ⁴University of Manchester, United Kingdom

THE UNIVERSITY of York

LaBr₃(Ce) Crystals

- High resolution scintillators, ~3% at 662keV
- When doped with cerium, high light output (~60,000 photons/MeV)
- Good Timing resolution of FWHM~260ps
- Fast decay time (~25ns)
- Peak emission wavelength in Blue-UV part of the EM spectrum (380nm), very compatible with PMTs.

Self Activation of ¹³⁸La

Alpha Contamination

²²⁷Ac (t_{1/2}=21.2yrs), appears in the same group (IIIB) as Lanthanum

Neutron Response of LaBr₃:Ce Detectors

385kBq ²²Na Spectrum

