What could we learn from detailed simulations on a single crystal

B. Genolini, J. Pouthas, T. Zerguerras IPN Orsay

PARIS Collaboration Meeting

Krakow, October 2009

Energy deposit GEANT 4 simulations

T. Zerguerras

Light collection LITRANI simulations

B. Genolini

PARIS Collaboration Meeting

Krakow, October 2009

Geometries and materials

Materials:

LaBr₃, density: 5.10 g/cm³
CsI density: 4.53 g/cm³

Single LaBr₃:

- Box 2" × 2" × 2" (I) - Box 2" × 2" × 4" (II)

PARIS Phoswich:

Primary event

 γ on normal incidence on the center of the crystal forward face The Z axis is the direction of the incident particle

10 000 generated events for each energy.

Energies:

- Single LaBr₃: 1, 2, 4, 6, 8, 12, 16 and 20MeV.
- PARIS Phoswich: 1, 2, 4, 6, 8, 12, 16 and 20MeV.

Physics model

GEANT 4, v9.1p03 low energy electromagnetic package, including G4EMLOW 6.2 tables (for atomic deexcitation processes, like: X-ray fluorescence, Auger emission ...).

- Photoelectric effect (G4LowEnergyPhotoelectric)
- Compton scattering (G4LowEnergyCompton)
- Rayleigh scattering (G4LowEnergyRayleigh)
- Gamma conversion (G4LowEnergyGammaConversion)

e⁻ physics list includes:

- Multiple scattering (G4MultipleScattering)
- Ionisation (G4LowEnergyIonisation)
- Bremsstrahlung (G4LowEnergyBremsstrahlung)

e⁺ physics list includes:

- Multiple scattering (G4MultipleScattering)
- Ionisation (G4elonisation)
- Bremsstrahlung (G4eBremsstrahlung)
- Annihilation (G4eplusAnnihilation)

Informations from GEANT4 simulations

- Crystal energy response (no energy resolution distribution included)
- γ interaction probability
- Hits distribution inside crystals
 - Points for scintillation light emission injected in LITRANI for light response calculations (see B. Genolini work).

Single LaBr₃ crystal

$2'' \times 2'' \times 2''$ crystal energy response

Interaction probability in 2" by 2" by 2" LaBr₃

Interaction probability in 2" by 2" by 4" LaBr₃

Interaction probability

 γ interaction probability in LaBr₃

Complete absorption, Z distrib. of dE/dz (I)

T. Zerguerras, IPN Orsay

Complete absorption, Z distrib. of dE/dz (II)

T. Zerguerras, IPN Orsay

Incomplete absorption, Z distrib. of dE/dz (I)

Incomplete absorption ,Z distrib. of dE/dz (II)

PARIS Phoswich

LaBr₃ energy response

Csl energy response

LaBr₃- Csl energy correlation

Events on straight line with Slope equal to 1

Efficiencies

Efficiencies

Events where more than 99% of the incident γ energy is measured

What is Litrani?

LITRANI stands for LIght TRansmission in ANIsotropic media.

- General purpose Monte-Carlo program to simulate the propagation of optical photons
- ROOT library
- Developped at CEA, Saclay, France for GLAST and the CMS calorimeter (http://gentit.home.cern.ch/gentit/litrani)
- Classes and data library from measured materials :
 - Scintillators: PbWO4, CsI(Tl)
 - Revetments: Aluminum, Tyvek, VM2000
 - Detectors: PMT (XP2020), APD
 - Surface state: depolished, thin slice of air
- Extendable library (Photocathode sensitivity, scintillator emission spectrum, etc.)

B. Genolini, IPN Orsay

What calculates Litrani?

- Generate light according to the models given in input
- Photon trajectory
- Automated reports:
 - Distance travelled by photons
 - Number of photons absorbed in material
 - Number of photons hitting a face
 - Number of photons traversing a face
 - Number of hits per face

Simulation steps

- Model of the LaBr3 scintillator
 - Determine the emission peaks from Gaussian fits
 - Decay time: defined according to the data sheet
 - Absorption Length: not found took 5 m
 - Wrapped with aluminum
 - Light yield: 63 photons / keV (Saint-Gobain data)
- Photocathode:
 - Quantum efficiency: data from Photonis XP3292 (30 % QE at max)
 - segmentation: 5×5 subfaces
 - N.B.: photons not transformed are lost. The photons reflected by the aluminum and the first dynode of the PMT input are also lost.
- Event generation
 - Gamma interaction simulated by T. Zerguerras with Geant 4
 - Light emission: isotropic emission generated with the specified decay, from the calculated energy deposit. The possible crystal non linearity is introduced at this step.
- Run Litrani
 - Run on a reduced set of events (250 to 1000 to get the resolution and the histogram, 25 to estimate the number of photoelectrons)
 - Automated reports: information where the losses occur.
 - The program tracks the photons: get the information on sub-faces of the photocathode.

QE Photocathode XP 3292

Examples of reports

Nb. of photons generated	:	11773479
Lost for abnormal reasons	:	0
Lost because abs. length 0	:	0
Eff. nb. of gen. photons	:	11773479
Nb. of photons seen	:	1230832
Efficiency	:	0.104543
error	:	+/-9.42312e-005
Lost for any reason	:	10542647
Lost in materials	:	4134064
Lost before wrapping	:	0
Lost in wrapping	:	3258339
Lost leaving setup	:	0
Lost because seen too late	:	2
Lost b. too few e- in APD	:	0
Lost b. acceptance angle	:	0
Lost b. quantum efficiency	:	3150242

- Configuration: 4", 1 MeV
- Calculated with 250 events

Preliminary results

Front face: 2"×2"	1 MeV	8 MeV
4"	6 573 phe (250 evts)	47 075 phe (25 evts)
2″	6 377 phe (250 evts)	47 275 phe (25 evts)
Phoswich 2" LaBr3 6" CsI(Tl)	LaBr3 5 847 phe (50 evts)	LaBr3 41 277 phe (50 evts)

- At 1 MeV : 6500 phe ⇒ 3.1 % FWHM (with 10 % ENF and no contribution of the scintillator intrinsic resolution) (Measurement: 2.7 % FWHM)
- At 8 MeV : 47 000 phe ⇒ 1.1 % FWHM (47 000 instead of 52000. Fit on a very low number of events)
- With the Phoswich, LaBr3 only:

5 800 phe \Rightarrow 3.2 % FWHM and 41 000 phe \Rightarrow 1.2 % FWHM

The results are sensitive to the wrapping (here, Aluminum)

Photocathode study (4" scint, 1 MeV)

- Charge distribution on the cathode: less than 5 % variation.
- Distribution of angles of arriving photons (0 to 90°, 0° = perpendicular to the surface)
- Negligible contribution of the direct light
- Majority : average ≈ 48°

Angular distribution

IPN

Photocathode study (2" scint, 1 MeV)

- Greater proportion of direct light
- Smaller number of total photons (due to a lower efficiency)

Angular distribution

PN

Conclusions

- Good agreement with measurements
- Poor capacity to localize
- Possibility to understand where the light losses occur
- Next simulations:
 - More statistics
 - Phoswich with better model and energy deposit in the CsI(Na)

Back up

Energy Resolution you can obtain with Scintillators

With a PMT:

$$R^2 = R_S^2 + R_M^2$$

The contribution of the noise is negligible

R: Overall resolution R_S : Intrinsic scintillator resolution R_M : Statistical resolution

$$R_{M} = 2.35 \sqrt{\frac{1 + v(M)}{N}}$$

v(M): variance of the PMT gain (~0,1)N: Number of photoelectrons

Peyrej @ ipno.in2p3.fr

Energy Resolution (FWHM) for LaBr₃

Sensibilité de la photocathode est un paramètre essentiel pour la résolution

Peyrej @ ipno.in2p3.fr

Cnrs