Study of collective modes of excitations in neutron rich Ba isotopes via fusion-evaporation reactions and SPIRAL2-Day1 beams

Spokespersons: Adam Maj, Silvia Leoni GANIL contact: Christell Schmitt

A. Maj^a, K. Mazurek^a, P. Bednarczyk^a, M. Ciemala^a, B. Fornal^a, M. Kmiecik^a, J. Grebosz, M. Zieblinski, W. Meczynski et al., S. Leoni^b, A.Bracco^b, G.Benzoni^b, F. Camera^b, F.C.L. Crespi^b, N. Blasi^b, B. Million^b, O. Wieland^b,

P.F. Bortignon, G. Colò, E. Vigezzi et al.,

Ch. Schmitt^c, J.P. Wieleczko^c, M. Lewitowicz^c, G. de France^c, M. Rejmund^c et al.,

F. Azaiez^d , I. Matea^d, I. Stefan^d et al.,

O. Stezowski^e, N. Redon^e et al.,

J. Dudek^f, O. Dorvaux^f, S. Courtin^f, M. Rousseau^f et al.,

D.R. Chakrabarty⁹, V. Nanal⁹, I. Mazumdar⁹ et al.,

T. Dossing^h, B. Herskind^h, et al.,

G. DeAngelisⁱ, D. Napoliⁱ, J.J. Valiente-Dobonⁱ et al.,

D. Bazzacco¹, E. Farnea¹, S. Lenzi¹, S.Lunardi¹, C.Ur¹, et al.

A. Gadea et al.,

and the PARIS-EXOGAM-AGATA collaborations

^a The Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland;

^b Università degli Studi e INFN sezione di Milano, Via Celoria 16, 20133, Milano, Italy;

^cGANIL, France; ^dIPN Orsay, France; ^fIPHC Strasbourg, France

⁹ TIFR and BARC, Mumbai, India

^h The Niels Bohr Institute, Copenhagen, Denmark

'Legnaro National Laboratory, INFN, Italy; 'University of Padova and INFN Milano, Italy;

Evolution of Nuclear Shapes of HOT nucleus at the Highest angular momenta

Lublin-Strasbourg liquid Drop (LSD) model by K. Pomorski and J. Dudek, PRC67 (2003) 044316

Analogous effect in fast rotating gravitating bodies

Oblate (MacLaurin) Elongated triaxial (Jacobi) -> gateway to Hyperdeformed shapes at T~0 Octupole, left- right asymmetric (Poincarè)

A.Maj *et al.* Int. J. Mod. Phys. E19, 532 (2010); K.Mazurek *et al.*, Acta Phys. Pol. B42, 471 (2011)

Search for Jacobi-Poincarè Transitions

→ Important for FISSION dynamics, search for HyperDeformed shapes at T≈0

Search for Jacobi-Poincarè Transitions

Experimental Signature

Fission:

- Symmetric (Jacobi)
- Asymmetric (Poincarè)

Line Shape of Giant Dipole Resonance

Warm Rotation (Variation in moment of Inertia):

- Giant Backbending
- Ridge-Valley Structures in y-y spectra

1- Line Shape of Giant Dipole Resonance

More on Jacobi transitions seen through GDR: see talk of Marysia Kmiecik during the Workshop
A.Maj et al, Nucl. Phys. A731 (2004) 319;
M. Kmiecik et al., Acta Phys. Pol. B36, (2005) 1169

2- Giant backbending

3- Ridge Valley Structure in γ-γ Spectra clear signature of warm rotation

Superdeformed ¹⁵²Dy was FIRST observed as ridge structures !!!

quasi-continuum $\gamma - \gamma$ spectra

projection at <E,> = 750 keV

Ridge spacing: Average Moment of Inertia J⁽²⁾ Ridge FWHM: Spread in J⁽²⁾

Best Candidates are expected in neutron-rich nuclei

New calculations based on the LSD model, allowing odd-rank deformation parameters (α_{30} , α_{50} , α_{70}) to be free:

K. Mazurek, J. Dudek, A.Maj, to be published

A.Maj, K. Mazurek, J. Dudek, M. Kmiecik, D. Rouvel "Shape evolution at high spins and temperatures: nuclear Jacobi and Poincare transition", J. Mod. Phys. E19 (2010) 53

~430 MeV ⁹⁴Kr beam on ⁴⁸Ca target \rightarrow ¹⁴²Ba^{*} SPIRAL2 beam with I~10⁹ pps (@DAV1 I=1.3×10⁷ pps)

Lublin-Strasbourg liq.Drop (LSD) model by K. Pomorski and J. Dudek, PRC67 (2003) 044316

Jacobi shape transition sets in around I=76

OUR <u>EUROBALL IV+DIAMANT</u> experiment,

B. Herskind et al.

⁶⁴Ni + ⁶⁴Ni \rightarrow ¹²⁸Ba*, 255 and 261 MeV

Search for Discrete HyperDeformed Bands

z	124Nd	125Nd	126Nd	127Nd	128Nd	129Nd	130Nd	131Nd	132Nd	133Nd	134Nd	135Nd	136Nd	137Nd	138Nd	139Nd	140Nd
	123Pr	124Pr	125Pr	126Pr	127Pr	128Pr	129Pr	130Pr	131Pr	132Pr	133Pr	134Pr	135Pr	136Pr	137Pr	138Pr	139Pr
58	122Ce	123Ce	124Ce	125Ce	126Ce	127Ce	128Ce	129Ce	130Ce	131Ce	132Ce	133Ce	134Ce	135Ce	136Ce	137Ce	138Ce
	121La	122La	123La	124La	125La	126La	127La	128La	129La	130La	131La	132La	133La	134La	135La	136La	137La
56	120Ba	121Ba	122Ba	123Ba	124Ba	125Ba	126Ba	1278a	128Ba	129Ba	130Ba	131Ba	132Ba	133Ba	134Ba	135Ba	136Ba
	119Cs	120Cs	121Cs	122Cs	113Cs	124.75	125Cs	126Cs	1270	128Cs	129Cs	130Cs	131Cs	132Cs	133Cs	134Cs	135Cs
54	118Xe	119Xe	120Xe	121Xe	122Xe	123Xe	124Xe	125Xe	126Xe	27Xe	128Xe	129Xe	130Xe	131Xe	132Xe	133Xe	134Xe
	117I	118I	1191	1201	1211	1221	123I	124I	1251	1261	127I	1281	129I	1301	131I	132I	133I
52	116Te	117Te	118Te	119Te	120Te	1217.	122Te	123Te	124Te	125Te	126Te	127Te	128Te	129Te	130Te	131Te	132Te
	64		66		68		70		72		74		76		78		N

Including Shell and Temperature Effects

Results from EUROBALL experiment: NO discrete HyperDef bands Particle gated Ridge with very large J ⁽²⁾ in limited Spin Region

Particle gate	γ -gate	Nucleus	$\Delta E_{\gamma} (\text{keV})$	$J_{ m exp}^{(2)}$	$J_{\rm theory}^{(2)}$	Probable shape
xn	(2n)	126 Ba	52	77	118	SD
α	(αn)	123 Xe	56	71		SD
α	$(\alpha 2n)$	122 Xe	52	77	108	SD
α	$(\alpha 3n)$	121 Xe	64	63		$^{\mathrm{SD}}$
2lpha	(2α)	120 Te	56	71		SD
2lpha	$(2\alpha 2n)$	$^{118}\mathrm{Te}$	36	111	97	HD 🚄
p	(p2n)	^{125}Cs	40	100	106	HD
p	(p3n)	^{124}Cs	36	111		HD
2p	(2p2n)	124 Xe	36	111	111	HD
$\alpha + p$	(αpn)	^{122}I	56	71		SD
$\alpha + p$	$(\alpha p2n)$	^{121}I	52	77	102	SD

Several charged particle channels

SPIRAL2 Day1 experiment: ⁹⁰Kr (~ 10⁹ pps) + ⁴⁸Ca → ¹³⁸Ba*

Figure 11. Left: Schematic illustration of the Excitation energy vs. Spin phase space for decay of the compound nucleus ¹³⁸Ba, populated by the fusion-evaporation reaction ⁹⁰Kr (at 370MeV) on ⁴⁸Ca. The total spin distribution is calculated by the GRAZING model, while the evaporation part, after fission, is estimated by CASCADE. The yields into the main neutron-evaporation channels are shown in the right part of the figure (see text for details). Integrated cross sections are also given for various channels.

LOI, A. Maj and S. Leoni

Experimental strategy: Step Approach

Day-0) LNL Legnaro: ⁸⁶Kr (stable) on ⁴⁸Ca leading to ¹³⁴Ba*: TEST of inverse kinematic reaction with <u>PARIS prototype, HECTOR+</u>, <u>GALILEO and RFD</u>. TEST competition with fission at extreme spins in neutron-rich region.

Day-1) At the first stage of SPIRAL2 the reaction ⁹⁰Kr (with intensity of 5×10^8 pps and ~4 MeV/A) on ⁴⁸Ca target will be used to populate the compound nucleus ¹³⁸Ba* at maximum spin around 90 \hbar .

Day-2) At a later stages (Phase2-Day2) even more neutron-rich systems, as e.g. ¹⁴²Ba* will be reached by the use of the ⁹⁴Kr beam, with similar intensity.

Experimental Setup @ SPIRAL2

1π AGATA/EXOGAM2 + 1π PARIS + VAMOS/RFD + DIAMANT

Recoil Filter Detector : see contribution of Mateusz Krzysiek

Thank You for the Attention

Proposed set-up at LNL:

GALILEO + LaBr3 (+ PARIS Prototype) + RFD

Discrete γ lines Ridge structures/E2 bump High-energy γ rays (GDR)

Reject fission Measure of $(v, \vartheta)_{er}$

High efficiency and selectivity

PARIS prototype: cluster of 9 phoswich crystals (LaBr3 2"x2"x2" +Nal 2"x2"x6")
 Dimension (without PMTs and holding structure): 6"x6"x8"
 READY: beginning of 2012

October 2011: 5 phoswiches, to form a "clover" or "cross-like" cluster.

Heavy Ion detection: large-acceptance spectrometer VAMOS @ 0°

Hyper- versus super-deformation: Expected differences in experimental approaches and suggested new strategies

- The discrete hyper-deformed bands are predicted to be much shorter than the super-deformed bands: 5–8 transitions typically, compared to 20 or more in the super-deformation case. Consequently, the experimental criteria based on the "picket-fence" like spectra must take this into account.
- The Jacobi transition seems a necessary condition: only nuclei that produce the Jacobi transitions, and therefore, the minima at high spins, high temperatures and at the same time at the hyper-deformed shapes can be populated through the fusion-evaporation reactions. Consequently, in contrast to the discussions existing so far in the literature, the first theoretical criterion should be "the nucleus of interest for the hyper-deformation studies must produce the Jabi transition". Only on top of that we must apply the shell-closure criteria, negative shell energies *etc.*
- As the result of the previous observation, one should seriously consider a drastic change in the experiment objectives: instead of hunting for the long discrete bands (that are anyway predicted to be absent) concentrate on the γ-γ-γ correlation analyses that give precious information at this time: the average length of the HD bands, the numbers of the excited bands in a given energy window *etc*.

Best Candidates (n-rich Ba): 94 Kr + 48 Ca $\rightarrow {}^{142}$ Ba* (Z=56, N=86)

Fusion reactions with radioactive beams (SPIRAL2)

Experimental setup: AGATA/EXOGAM2 array $+ 2\pi$ PARIS scintillator array + detection system for selection of the evaporation residues (RFD: Recoil Filter Detector)