Beams and sites for testing PARIS

Indranil Mazumdar

Tata Institute of Fundamental Research, Mumbai

> PARIS Collaboration Meeting, Bormio 21st February, 2012

Plan of the talk

4Beams & sites:

calibrations & Determination of response of PARIS at high energies a few standard reactions & accelerator facilities

4Studies with Lanthanum Bromide detectors

testing small volume detectors (WG Talks 2009, 2011)

testing large volume crystal combined assembly of LaBr:Ce & NaI(Tl) some results for 2"X2"X8" LaBr₃:Ce bars

testing of a LaBr₃:Ce-NaI(Tl) phoswich

measurements with sources and in-beam and simulations

Collaborators

- D. A. Gothe
- P.B. Chavan
 Tata Institute of Fundamental Research, Mumbai
- G. Anil Kumar IIT-Roorkee

Calibration & response function from low to high energy;

²⁴⁴Am-⁹Be (4.43 MeV)
9
Be(α , n γ)¹²c

²⁴⁴Cm-¹³c (6.13 MeV)
13
C(α , n γ)¹⁶O

<u>The use</u>: Energy calibration, timing response, efficiencies, linearity, uniformity neutron response

References:

- 1) Nicolini et al., Nucl. Instr. Meth. A 582 (2007)
- 2) Ciemala et al., Nucl. Instr. Meth. A 608 (2009)
- 3) G. Anil Kumar et al. Nucl. Instr.Meth A 610(2009)
- 4) G. Hall et al. NIM-A (In Press), Available on line 25 Oct. 2011

Channel 4000 4500 5000 Energy(KeV)

Linearity

Mazumdar, Gothe, Kumar

n-gamma

Uniformity

Higher energies beyond Am-Be & Cm-C

Discrete gamma rays up to ~9 MeV in lab

Large LaBr + Annular NaI assembly

Discussions with F. Camera gratefully acknowledged

Few standard in-beam reactions at a glance

$$E_{\gamma}$$
 = 2.8, 7.7, 10.5, 12.3 MeV
(Thick target yield per incident proton for 10.76 MeV is well known

23
Na(p, γ) 24 Mg 1.368, 2.754, 8.925, 11.585 MeV

39
K(p, γ) 40 Ca 3.904, & 5.736 MeV

$$^{7}\text{Li}(p,\gamma)^{8}\text{Be}$$
 17.619 MeV

Courtesy: A. Maj

Courtesy: Prof. F. Camera

HECTOR spectrum: Courtesy: Prof. F. Camera

Mazumdar et. al. NIM-A (417)

300 2nd escape peak 1st escape peak (21.478 MeV) (21.989 MeV) 250 200 Counts 22.5 MeV 150 50 21000 19000 20000 22000 23000 24000 Energy (keV)

22.5 MeV γ-rays measured at TIFR with the large LaBr.

Mazumdar et al.

Ciemala et al. have measured up to 17.6 MeV for 2" X 2" NIM 608 (2009), Fig. 3

Linearity up to 22.5 MeV

Some facilities for in-beam measurements:

ATOMKI, Debrecen:

Protons between ~150 keV to ~5 MeV at several micro Amp. (also good stock of useful targets)

IFJ, Krako:

Protons between 500 keV up to 2.5 MeV

India:

Two heavy-ion Pellletron machines: (TIFR-BARC & IUAC)
Can provide 22 Mev and 7 MeV protons for two of the reactions discussed

FZ Rossendorf, Germany

The ELBE facility is capable of producing photons up to ~18 MeV. The integral flux is about 109/s on a target of about 3 cm². It is an user facility.

Measurments at Catania & HIGS

Quarati et al. NIM-629 (2011)

- 1) High energy back ground reduced considerably
- 2) Internal activity around 30 keV reduced
- 3) Energy resolution deteriorates.

G. Hall et al. nim-A (In Press)
Online 25 Oct. 2011

Energy (keV)

Detailed GEANT4 simulations reproduce the results very well

Charactrising a 2"X2"X8" square bar of LaBr₃:Ce

Possible combined arrangement of scintillations for high energy gamma ray measurements

Kumar, Mazumdar, Gothe, NIM-A 610 (2009)

3.5" diameter 6" long cylindrical LaBr_{3:}Ce

The TIFR Large LaBr3. Ce+NaI(Tl) assembly

Efficiency measurement of the LaBr+ NaI Assembly: *Mazumdar, Gothe, Kumar*

Spin gated GDR γ -ray spectrum measured with a combined assembly of large cylindical LaBr₃:Ce and annular NaI(Tl)

Summary:

- •Small cylindrical LaBr₃:Ce studied in detail, <u>absolute scale</u> simulations done for efficiencies
- •Large cylinder of 3.5" X 6" studied up to 22.5 MeV
- •Combined assembly of LaBr₃:Ce+NaI(Tl) studied, <u>GDR</u> spectrum measured for hot rotating ¹⁹⁶Hg
- •Phoswich of <u>LaBr₃:Ce+NaI(Tl)</u> studied for application in low energy balloon borne astronomy experiments.
- •Characterisations of 2"X2"X8" square bars done with sources up to ~6 MeV

